BackgroundLEDGF/p75 (LEDGF) is the main cellular cofactor of HIV-1 integrase (IN). It acts as a tethering factor for IN, and targets the integration of HIV in actively transcribed gene regions of chromatin. A recently developed class of IN allosteric inhibitors can inhibit the LEDGF-IN interaction.ResultsWe describe a new series of IN-LEDGF allosteric inhibitors, the most active of which is Mut101. We determined the crystal structure of Mut101 in complex with IN and showed that the compound binds to the LEDGF-binding pocket, promoting conformational changes of IN which explain at the atomic level the allosteric effect of the IN/LEDGF interaction inhibitor on IN functions. In vitro, Mut101 inhibited both IN-LEDGF interaction and IN strand transfer activity while enhancing IN-IN interaction. Time of addition experiments indicated that Mut101 behaved as an integration inhibitor. Mut101 was fully active on HIV-1 mutants resistant to INSTIs and other classes of anti-HIV drugs, indicative that this compound has a new mode of action. However, we found that Mut101 also displayed a more potent antiretroviral activity at a post-integration step. Infectivity of viral particles produced in presence of Mut101 was severely decreased. This latter effect also required the binding of the compound to the LEDGF-binding pocket.ConclusionMut101 has dual anti-HIV-1 activity, at integration and post-integration steps of the viral replication cycle, by binding to a unique target on IN (the LEDGF-binding pocket). The post-integration block of HIV-1 replication in virus-producer cells is the mechanism by which Mut101 is most active as an antiretroviral. To explain this difference between Mut101 antiretroviral activity at integration and post-integration stages, we propose the following model: LEDGF is a nuclear, chromatin-bound protein that is absent in the cytoplasm. Therefore, LEDGF can outcompete compound binding to IN in the nucleus of target cells lowering its antiretroviral activity at integration, but not in the cytoplasm where post-integration production of infectious viral particles takes place.
Recently, a new class of HIV-1 integrase (IN) inhibitors with a dual mode of action, called IN-LEDGF/p75 allosteric inhibitors (INLAIs), was described. Designed to interfere with the IN-LEDGF/p75 interaction during viral integration, unexpectedly, their major impact was on virus maturation. This activity has been linked to induction of aberrant IN multimerization, while inhibition of the IN-LEDGF/p75 interaction accounts for weaker antiretroviral effect at integration. Since these dual activities result from INLAI binding to IN at a single binding site, we expected that these activities co-evolved together, driven by the affinity for IN. Using an original INLAI, MUT-A, and its activity on an Ala-125 (A125) IN variant, we found that these two activities on A125 IN can be fully dissociated: MUT-A-induced IN multimerization and the formation of eccentric condensates in viral particles, that are responsible for inhibition of virus maturation, were lost, while inhibition of the IN-LEDGF/p75 interaction and consequently integration, was fully retained. Hence the mere binding of INLAI to A125 IN is insufficient to promote the conformational changes of IN required for aberrant multimerization. By analyzing the Xray structures of MUT-A bound to the IN catalytic core domain (CCD) with or without the A125 polymorphism, we discovered that the loss of IN multimerization is due to stabilization of the A125 IN variant CCD dimer, highlighting the importance of the CCD dimerization energy for IN multimerization. Our study reveals that affinity for the LEDGF/p75-binding pocket is not sufficient to induce INLAI-dependent IN multimerization and the associated inhibition of viral maturation.The integrase (IN) protein of Human Immunodeficiency Virus type 1 (HIV-1) catalyzes the stable insertion of the viral cDNA genome into the host cell chromatin, a step of the viral life cycle that is required for efficient viral gene expression. Integration occurs via a two-step reaction where IN initially cleaves after a conserved CA dinucleotide at the 3' end of the viral cDNA genome to free a 3'-OH group (3' processing), which is next used to carry out a nucleophilic attack on cellular chromosomal DNA (strand transfer).IN is one of the preferred targets for the development of antiretroviral (ARV) drugs. However, given the high genetic variability of HIV-1, IN mutations conferring cross-resistance to the first generation INSTIs, RAL and EVG, were described in patients receiving INSTI-containing regimens (2). The second generation INSTI DTG has a higher genetic barrier and conserves good ARV activity against a number of RAL-and EVGresistant strains. Recent reports showed that Bictegravir, a second generation INSTI still in development from Gilead Sciences, has a resistance profile similar to DTG (3). Nevertheless, DTG and Bictegravir are sensitive to the most detrimental INSTI resistant mutations albeit at lower levels than first generation INSTIs (4). Therefore, the development of small molecule inhibitors impairing IN functions with dis...
Penicillin-binding proteins (PBPs) are the targets of the β-lactams, the most successful class of antibiotics ever developed against bacterial infections. Unfortunately, the worldwide and rapid spread of large spectrum β-lactam resistance genes such as carbapenemases is detrimental to the use of antibiotics in this class. New potent PBP inhibitors are needed, especially compounds that resist β-lactamase hydrolysis. Here we describe the structure of the E. coli PBP2 in its Apo form and upon its reaction with 2 diazabicyclo derivatives, avibactam and CPD4, a new potent PBP2 inhibitor. Examination of these structures shows that unlike avibactam, CPD4 can perform a hydrophobic stacking on Trp370 in the active site of E. coli PBP2. This result, together with sequence analysis, homology modeling, and SAR, allows us to propose CPD4 as potential starting scaffold to develop molecules active against a broad range of bacterial species at the top of the WHO priority list.
A series of 5-substituted-6-fluoro-7-(cycloalkylamino)-1,4-dihydro-4-oxo-1,8- naphthyridine-3-carboxylic acids have been prepared and tested for their in vitro and in vivo antibacterial activities. The 5-methyl group gave better in vitro activity with the 1-cyclopropyl appendage, but poorer activity with the 1-tert-butyl moiety. With the 1-(2,4-difluorophenyl) substitution, the influence of the 7-cycloalkylamino group was determinant: a (3S)-3-amino-pyrrolidine was shown to enhance greatly the in vitro and in vivo activity of the 5-methyl derivative. Compound 33 (BMY 43748) was selected as a promising candidate for an improved therapeutic agent.
Background HIV-1 Integrase (IN) interacts with the cellular co-factor LEDGF/p75 and tethers the HIV preintegration complex to the host genome enabling integration. Recently a new class of IN inhibitors was described, the IN-LEDGF allosteric inhibitors (INLAIs). Designed to interfere with the IN-LEDGF interaction during integration, the major impact of these inhibitors was surprisingly found on virus maturation, causing a reverse transcription defect in target cells.Results Here we describe the MUT-A compound as a genuine INLAI with an original chemical structure based on a new type of scaffold, a thiophene ring. MUT-A has all characteristics of INLAI compounds such as inhibition of IN-LEDGF/p75 interaction, IN multimerization, dual antiretroviral (ARV) activities, normal packaging of genomic viral RNA and complete Gag protein maturation. MUT-A has more potent ARV activity compared to other INLAIs previously reported, but similar profile of resistance mutations and absence of ARV activity on SIV. HIV-1 virions produced in the presence of MUT-A were non-infectious with the formation of eccentric condensates outside of the core. In studying the immunoreactivity of these non-infectious virions, we found that inactivated HIV-1 particles were captured by anti-HIV-specific neutralizing and non-neutralizing antibodies (b12, 2G12, PGT121, 4D4, 10-1074, 10E8, VRC01) with efficiencies comparable to non-treated virus. Autologous CD4+ T lymphocyte proliferation and cytokine induction by monocyte-derived dendritic cells (MDDC) pulsed either with MUT-A-inactivated HIV or non-treated HIV were also comparable.Conclusions Although strongly defective in infectivity, HIV-1 virions produced in the presence of the MUT-A INLAI have a normal protein and genomic RNA content as well as B and T cell immunoreactivities comparable to non-treated HIV-1. These inactivated viruses might form an attractive new approach in vaccine research in an attempt to study if this new type of immunogen could elicit an immune response against HIV-1 in animal models.Electronic supplementary materialThe online version of this article (10.1186/s12977-017-0373-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.