The CB1 cannabinoid receptor (CB1R) displays a significant level of ligand-independent (i.e. constitutive) activity, either when heterologously expressed in nonneuronal cells or in neurons where CB1Rs are endogenous. The present study investigates the consequences of constitutive activity on the intracellular trafficking of CB1R. When transfected in HEK-293 cells, CB1R is present at the plasma membrane, but a substantial proportion (ϳ85%) of receptors is localized in intracellular vesicles. Detailed analysis of CB1-EGFP expressed in HEK-293 cells shows that the intracellular CB1R population is mostly of endocytic origin and that treatment with inverse agonist AM281 traps CB1R at the plasma membrane through a monensin-sensitive recycling pathway. Co-transfection with dominant positive or dominant negative mutants of the small GTPases Rab5 and Rab4, but not Rab11, profoundly modifies the steady-state and ligand-induced intracellular distribution of CB1R, indicating that constitutive endocytosis is Rab5-dependent, whereas constitutive recycling is mediated by Rab4. In conclusion, our results indicate that, due to its natural constitutive activity, CB1R permanently and constitutively cycles between plasma membrane and endosomes, leading to a predominantly intracellular localization at steady state.
BackgroundLEDGF/p75 (LEDGF) is the main cellular cofactor of HIV-1 integrase (IN). It acts as a tethering factor for IN, and targets the integration of HIV in actively transcribed gene regions of chromatin. A recently developed class of IN allosteric inhibitors can inhibit the LEDGF-IN interaction.ResultsWe describe a new series of IN-LEDGF allosteric inhibitors, the most active of which is Mut101. We determined the crystal structure of Mut101 in complex with IN and showed that the compound binds to the LEDGF-binding pocket, promoting conformational changes of IN which explain at the atomic level the allosteric effect of the IN/LEDGF interaction inhibitor on IN functions. In vitro, Mut101 inhibited both IN-LEDGF interaction and IN strand transfer activity while enhancing IN-IN interaction. Time of addition experiments indicated that Mut101 behaved as an integration inhibitor. Mut101 was fully active on HIV-1 mutants resistant to INSTIs and other classes of anti-HIV drugs, indicative that this compound has a new mode of action. However, we found that Mut101 also displayed a more potent antiretroviral activity at a post-integration step. Infectivity of viral particles produced in presence of Mut101 was severely decreased. This latter effect also required the binding of the compound to the LEDGF-binding pocket.ConclusionMut101 has dual anti-HIV-1 activity, at integration and post-integration steps of the viral replication cycle, by binding to a unique target on IN (the LEDGF-binding pocket). The post-integration block of HIV-1 replication in virus-producer cells is the mechanism by which Mut101 is most active as an antiretroviral. To explain this difference between Mut101 antiretroviral activity at integration and post-integration stages, we propose the following model: LEDGF is a nuclear, chromatin-bound protein that is absent in the cytoplasm. Therefore, LEDGF can outcompete compound binding to IN in the nucleus of target cells lowering its antiretroviral activity at integration, but not in the cytoplasm where post-integration production of infectious viral particles takes place.
Recently, a new class of HIV-1 integrase (IN) inhibitors with a dual mode of action, called IN-LEDGF/p75 allosteric inhibitors (INLAIs), was described. Designed to interfere with the IN-LEDGF/p75 interaction during viral integration, unexpectedly, their major impact was on virus maturation. This activity has been linked to induction of aberrant IN multimerization, while inhibition of the IN-LEDGF/p75 interaction accounts for weaker antiretroviral effect at integration. Since these dual activities result from INLAI binding to IN at a single binding site, we expected that these activities co-evolved together, driven by the affinity for IN. Using an original INLAI, MUT-A, and its activity on an Ala-125 (A125) IN variant, we found that these two activities on A125 IN can be fully dissociated: MUT-A-induced IN multimerization and the formation of eccentric condensates in viral particles, that are responsible for inhibition of virus maturation, were lost, while inhibition of the IN-LEDGF/p75 interaction and consequently integration, was fully retained. Hence the mere binding of INLAI to A125 IN is insufficient to promote the conformational changes of IN required for aberrant multimerization. By analyzing the Xray structures of MUT-A bound to the IN catalytic core domain (CCD) with or without the A125 polymorphism, we discovered that the loss of IN multimerization is due to stabilization of the A125 IN variant CCD dimer, highlighting the importance of the CCD dimerization energy for IN multimerization. Our study reveals that affinity for the LEDGF/p75-binding pocket is not sufficient to induce INLAI-dependent IN multimerization and the associated inhibition of viral maturation.The integrase (IN) protein of Human Immunodeficiency Virus type 1 (HIV-1) catalyzes the stable insertion of the viral cDNA genome into the host cell chromatin, a step of the viral life cycle that is required for efficient viral gene expression. Integration occurs via a two-step reaction where IN initially cleaves after a conserved CA dinucleotide at the 3' end of the viral cDNA genome to free a 3'-OH group (3' processing), which is next used to carry out a nucleophilic attack on cellular chromosomal DNA (strand transfer).IN is one of the preferred targets for the development of antiretroviral (ARV) drugs. However, given the high genetic variability of HIV-1, IN mutations conferring cross-resistance to the first generation INSTIs, RAL and EVG, were described in patients receiving INSTI-containing regimens (2). The second generation INSTI DTG has a higher genetic barrier and conserves good ARV activity against a number of RAL-and EVGresistant strains. Recent reports showed that Bictegravir, a second generation INSTI still in development from Gilead Sciences, has a resistance profile similar to DTG (3). Nevertheless, DTG and Bictegravir are sensitive to the most detrimental INSTI resistant mutations albeit at lower levels than first generation INSTIs (4). Therefore, the development of small molecule inhibitors impairing IN functions with dis...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.