The Périgord black truffle (Tuber melanosporum Vittad.) and the Piedmont white truffle dominate today's truffle market. The hypogeous fruiting body of T. melanosporum is a gastronomic delicacy produced by an ectomycorrhizal symbiont endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal Laccaria bicolor, the expansion of gene families may have acted as a 'symbiosis toolbox'. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of T. melanosporum, which at approximately 125 megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for approximately 58% of the genome. In contrast, this genome only contains approximately 7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that T. melanosporum degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both L. bicolor and T. melanosporum, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis-'the symbiosis toolbox'-evolved along different ways in ascomycetes and basidiomycetes.
Summary A large database of invasive forest pathogens (IFPs) was developed to investigate the patterns and determinants of invasion in Europe. Detailed taxonomic and biological information on the invasive species was combined with country‐specific data on land use, climate, and the time since invasion to identify the determinants of invasiveness, and to differentiate the class of environments which share territorial and climate features associated with a susceptibility to invasion. IFPs increased exponentially in the last four decades. Until 1919, IFPs already present moved across Europe. Then, new IFPs were introduced mainly from North America, and recently from Asia. Hybrid pathogens also appeared. Countries with a wider range of environments, higher human impact or international trade hosted more IFPs. Rainfall influenced the diffusion rates. Environmental conditions of the new and original ranges and systematic and ecological attributes affected invasiveness. Further spread of established IFPs is expected in countries that have experienced commercial isolation in the recent past. Densely populated countries with high environmental diversity may be the weakest links in attempts to prevent new arrivals. Tight coordination of actions against new arrivals is needed. Eradication seems impossible, and prevention seems the only reliable measure, although this will be difficult in the face of global mobility.
-This review synthesizes the available knowledge on drought-disease interactions in forest trees with a focus on (1) evidence and patterns of drought-disease interactions, (2) current understanding of processes and mechanisms, and (3) three well documented cases studies. The first part is based on the analysis of a database of slightly more than one hundred studies, obtained by keyword searches combining drought, diseases or pathogens, and forest trees. A large majority of published studies referred to a positive association between drought and disease, i.e. disease favoured by drought or drought and disease acting synergistically on tree health status, with a predominance of canker/dieback diseases, caused by pathogens like Botryosphaeria, Sphaeropsis, Cytospora and Biscognauxia (Hypoxylon). The type of disease-related variables (incidence vs. severity) and the intensity and timing of water stress were shown to be significant factors affecting the drought-infection interaction. Interactions with other abiotic stresses and species-specific and genetic effects, related to host or pathogen, have also been reported. Direct effects of drought on pathogens are generally negative, although most fungal pathogens exhibit an important plasticity and can grow at water potentials well below the minimum for growth of their host plants. Studies on indirect effects of drought on pathogens through other community interactions are still relatively scarce. Positive drought-infection effects can mostly be explained by indirect effects of drought on host physiology. The predisposition and the multiple stress hypotheses are presented, as well as recent developments in the study of the molecular basis of abiotic and biotic stress, and their interactions. Sphaeropsis sapinea on pines, Biscognauxia mediterranea on oaks and root pathogens in declines associated with drought provide illustrative examples, treated as case studies, of pathogens of current significance associated with drought. The conclusion highlights some knowledge gaps, e.g. the role of latent parasites and the shift to a pathogenic stage, or the genetics of some fungal groups. The need for prevention of pathogen dispersal, especially crucial in the case of latent pathogens, is emphasized. drought / water stress / pathogenic fungi / predisposition / forest trees Résumé -Interactions entre sécheresse et agents pathogènes chez les arbres forestiers. Cette revue synthétise les connaissances actuelles sur les interactions entre sécheresse et maladies chez les arbres forestiers, avec trois grandes parties : (1) description des types d'interaction ; (2) connaissances acquises sur les mécanismes impliqués ; (3) trois études de cas bien étudiées. La première partie est basée sur l'analyse d'une base de données d'une centaine d'études, sélectionnées par recherche sur mots clés. La plupart de ces études se rapportent à des maladies favorisées par la sécheresse ou à un effet synergique entre sécheresse et maladie sur l'état sanitaire des arbres, avec une prédominance de m...
SummaryAn analysis of incidence of Phytophthora spp. in 732 European nurseries producing forest transplants, larger specimen trees, landscape plants and ornamentals, plus 2525 areas in which trees and shrubs were planted, is presented based on work conducted by 38 research groups in 23 European countries between 1972 and 2013. Forty-nine Phytophthora taxa were recorded in 670 nurseries (91.5%); within these nurseries, 1614 of 1992 nursery stands (81.0%) were infested, although most affected plants appeared healthy. In forest and landscape plantings, 56 Phytophthora taxa were recovered from 1667 of 2525 tested sites (66.0%). Affected plants frequently showed symptoms such as crown thinning, chlorosis and dieback caused by extensive fine root losses and/or collar rot. Many well-known highly damaging host-Phytophthora combinations were frequently detected but 297 and 407 new Phytophthora-host associations were also observed in nurseries and plantings, respectively. On average, 1.3 Phytophthora species/taxa per infested nursery stand and planting site were isolated. At least 47 of the 68 Phytophthora species/taxa detected in nurseries and plantings were exotic species several of which are considered well established in both nurseries and plantings in Europe. Seven known Phytophthora species/taxa were found for the first For. Path. 46 (2016) 134-163 doi: 10.1111/efp.12239 © 2015 http://wileyonlinelibrary.com/ time in Europe, while 10 taxa had not been previously recorded from nurseries or plantings; in addition, 5 taxa were first detections on woody plant species. Seven Phytophthora taxa were previously unknown to science. The reasons for these failures of plant biosecurity in Europe, implications for forest and semi-natural ecosystems and possible ways to improve biosecurity are discussed.
Dothistroma needle blight (DNB) is one of the most important diseases of pine. Although its notoriety stems from Southern Hemisphere epidemics in Pinus radiata plantations, the disease has increased in prevalence and severity in areas of the Northern Hemisphere, including Europe, during the last two decades. This increase has largely been attributed to expanded planting of susceptible hosts, anthropogenic dispersal of the causative pathogens and changes in climate conducive to disease development. The last comprehensive review of DNB was published in 2004, with updates on geographic distribution and host species in 2009. Importantly, the recognition that two species, Dothistroma septosporum and D. pini, cause DNB emerged only relatively recently in 2004. These two species are morphologically very similar, and DNA-based techniques are needed to distinguish between them. Consequently, many records of host species affected or geographic location of DNB prior to 2004 are inconclusive or even misleading. The objectives of this review were (i) to provide a new database in which detailed records of DNB from 62 countries are collated; (ii) to chart the current global distribution of D. septosporum and D. pini; (iii) to list all known host species and to consider their susceptibility globally; (iv) to collate Drenkhan et al. 410 |
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.