Electrical activity in non-neuronal cells can be induced by altering the membrane potential and eliciting action potentials. For example, hormones, nutrients and neurotransmitters act on excitable endocrine cells. In an attempt to correlate such electrical activity with regulation of cell activation, we report here direct measurements of cytosolic free Ca2+ changes coincident with action potentials. This was achieved by the powerful and novel combination of two complex techniques, the patch clamp and microfluorimetry using fura 2 methodology. Changes in intracellular calcium concentration were monitored in single cells of the pituitary line GH3B6. We show that a single action potential leads to a marked transient increase in cytosolic free calcium. The size of these short-lived maxima is sufficient to evoke secretory activity. The striking kinetic features of these transients enabled us to identify oscillations in intracellular calcium concentration in unperturbed cells resulting from spontaneous action potentials, and hence provide an explanation for basal secretory activity. Somatostatin, an inhibitor of pituitary function, abolishes the spontaneous spiking of free cytosolic Ca2+ which may explain its inhibitory effect on basal prolactin secretion. Our data therefore demonstrate that electrical activity can stimulate Ca2+-dependent functions in excitable non-neuronal cells.
Although it is known that LH secretion starts at 17 days of gestation in the fetal rat and that this first LH release is most likely driven by hypothalamic GnRH, an earlier role for GnRH during fetal life has been postulated with the observation that presence of GnRH is important before day 13 of gestation for the differentiation of the pituitary anlage. In order to clarify the different roles of GnRH during fetal life, we have studied the first appearance of GnRH in the fetal brain, the expression of GnRH receptors in the fetal pituitary gland, and the presence of GnRH immunoreactivity within the fetal gonadotrophs. GnRH was present in the earliest brain tissue examined (12 days of gestation). From 12-17 days, GnRH content of fetal brain remained low and then increased markedly by the end of gestation. No immunoreactive GnRH-like material could be detected in rat placental tissue throughout gestation. Binding sites for GnRH were detected as early as 12 days of gestation in fetal pituitary glands. However, binding was very low until 16 days. At 17 days, Scatchard analysis indicated the presence of high affinity, low capacity binding sites [affinity constant (Ka) = 10(10) M-1]. Intracellular presence of GnRH as seen by immunocytochemistry using ultrathin sections prepared by cryoultramicrotomy was first visible at 14 days and started to increase at 16 days. LH was first detectable in the fetal pituitary by RIA at 17 days; FSH was first detectable at 21 days, and PRL at 1 day of postnatal life. Thereafter, neonatal pituitary contents of LH, FSH, and PRL increased linearly with-time, as did the number of pituitary GnRH receptors. At 10 days of postnatal life, pituitary contents of LH and FSH were significantly higher in females than in males. In summary, hypothalamic GnRH appears early in fetal life and potentially can induce differentiation of the pituitary anlage. Conversely, the presence at 15 days of gestation of specific binding sites for GnRH and of intracellular GnRH immunoreactivity in gonadotrophs indicates that the hypophysiotropic action of GnRH clearly precedes the start of LH biosynthesis.
The cytosolic free calcium concentration, [Ca2+]i, was monitored in single rat lactotrophs in primary culture with the fluorescent probe Fura 2. It was found that lactotrophs are very heterogeneous in their [Ca2+]i response to TRH and dopamine, the major physiological regulators of PRL secretion. While in most lactotrophs TRH raises [Ca2+]i, the kinetics of this rise and the magnitude of its first and second phases vary considerably. For dopamine two clearly divergent response types can be observed. In part of the lactotrophs dopamine causes a lowering of [Ca2+]i from elevated levels, whereas in about 40% of the lactotrophs dopamine leads to a transient rise of [Ca2+]i. The present study reveals subclasses of lactotrophs with distinct [Ca2+]i response characteristics. It is suggested that such response type heterogeneity is a means of optimizing the secretory response to the complex regulatory influences on the pituitary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.