A composite fan stage representative of a modern UHBR architecture has been investigated experimentally on a novel test facility at Ecole Centrale de Lyon. These measurements show indications for strong overloading of the tip region resulting in extensive blockage of the blade passage. The performance of the fan is analyzed with extensive instrumentation including radial profiles upstream and downstream of the rotor. Unsteady pressure measurements help to interpret the flow structure in the tip region. The results are presented across a range of operating points on the design speedline. At the stability limit, the machine suffers from Non-Synchronous Vibrations which result from small scale aerodynamic disturbances propagating between the leading edges. A detailed analysis on the occurring waveforms is presented for two operating speeds. In order to further analyze the observed phenomena, a numerical study has been conducted using the RANS solver elsA. The results of steady calculations are discussed in comparison with the detailed experiments. Unsteady simulations near the stability limit accurately predict the aerodynamic disturbances observed during NSV. The obtained results are unusual for typical state-of-the-art transonic fans, as they show the same behavior as high-pressure compressor front stages, dominated by blockage caused by tip leakage flow. Even though flutter is not observed, the observed Non-Synchronous Vibration mechanism is a critical aeroelastic phenomenon which is of great interest for future designs of low speed fans.
This paper describes observed modal oscillations arising from a feedback mechanism between an acoustic resonance in the exit flow channel and aerodynamic and aeroelastic disturbances in a transonic fan stage. During tests, the fan suffered from rotating stall and surge which were preceded by low frequency pressure fluctuations. Through a range of aerodynamic and aeromechanical instrumentations, it was possible to determine a clear chain of cause and effect, whereby geometrical asymmetries trigger local instabilities and modal oscillations through an interaction with the system acoustics. To the authors knowledge, this is the first time that modal oscillations occurring before stall are attributed to multiphysical interactions, showing that acoustic characteristics of the system can influence the aerodynamic as well as the aeromechanical stability of fans. This bears implications for the stability assessment of fans and compressors because first, the stability margin may be affected by standing waves generated in bypass ducts or combustion chambers, and second, geometrical variations of the rotor blades which are believed to be beneficial for aeromechanical stability may lead to complex coupling phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.