Background and purpose Osseous pelvic tumors can be resected and reconstructed using massive bone allografts. Geometric accuracy of the conventional surgical procedure has not yet been documented. The aim of this experimental study was mainly to assess accuracy of tumoral resection with a 10-mm surgical margin, and also to evaluate the geometry of the host-graft reconstruction.Methods An experimental model on plastic pelvises was designed to simulate tumor resection and reconstruction. 4 experienced surgeons were asked to resect 3 different tumors and to reconstruct pelvises. 24 resections and host-graft junctions were available for evaluation. Resection margins were measured. Several methods were created to evaluate geometric properties of the host-graft junction.Results The probability of a surgeon obtaining a 10-mm surgical margin with a 5-mm tolerance above or below, was 52% (95% CI: 37-67). Maximal gap, gap volume, and mean gap between host and graft was 3.3 (SD 1.9) mm, 2.7 (SD 2.1) cm 3 and 3.2 (SD 2.1) mm, respectively. Correlation between these 3 reconstruction measures and the degree of contact at the host-graft junction was poor.Interpretation 4 experienced surgeons did not manage to consistently respect a fixed surgical margin under ideal working conditions. The complex 3-dimensional architecture of the pelvis would mainly explain this inaccuracy. Solutions to this might be to increase the
In order to improve the power density of microactuators, recent research focuses on the applicability of fluidic actuation at the microscale. The main encountered difficulties in the development of small fluidic actuators are related to production tolerances and assembly requirements. In addition, these actuators tend to comprise highly three-dimensional parts, which are incompatible with traditional microproduction technologies. This paper presents accurate production and novel assembly techniques for the development of a hydraulic microactuator. Some of the presented techniques are widespread in precision mechanics, but have not yet been introduced in micromechanics. A prototype hydraulic microactuator with a bore of 1 mm and a length of 13 mm has been fabricated and tested. Measurements showed that this actuator is able to generate a force density of more than 0.23 N mm−2 and a work density of 0.18 mJ mm−3 at a driving pressure of 550 kPa, which is remarkable considering the small dimensions of the actuator.
Significant improvements in cutting accuracy can be achieved when a navigation system or an industrial robot is integrated into a freehand bone-cutting process when no jigs are available. The procedure for navigated hand-controlled positioning of the oscillating saw appears to be easy to learn and use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.