Plasmonic nanoapertures generate strong field gradients enabling efficient optical trapping of nanoobjects. However, because the infrared laser used for trapping is also partly absorbed into the metal leading to Joule heating, plasmonic nano-optical tweezers face the issue of local temperature increase.Here, we develop three independent methods based on molecular fluorescence to quantify the temperature increase induced by a 1064 nm trapping beam focused on single and double nanoholes milled in gold films. We show that the temperature in the nanohole can be increased by 10°C even at the moderate intensities of 2 mW/µm² used for nano-optical trapping. The temperature gain is found to be largely governed by the Ohmic losses into the metal layer, independently of the aperture size, double-nanohole gap or laser polarization. The techniques developed therein can be readily extended to other structures to improve our understanding of nano-optical tweezers and explore heatcontrolled chemical reactions in nanoapertures.
We report on the angular distribution, polarization, and spectrum of the light emitted from an electrically controlled nanoscale light source. This nanosource of light arises from the local, low-energy, electrical excitation of localized surface plasmons (LSP) on individual gold nanoparticles using a scanning tunneling microscope (STM). The gold nanoparticles (NP) are chemically synthesized truncated bitetrahedrons. The emitted light is collected through the transparent substrate and the emission characteristics (angular distribution, polarization, and spectrum) are analyzed. These three observables are found to strongly depend on the lateral position of the STM tip with respect to the triangular upper face of the gold NP. In particular, the resulting light emission changes orientation when the electrical excitation via the STM tip is moved from the base to the vertex of the triangular face. On the basis of the comparison of the experimental observations with an analytical dipole model and finite-difference time-domain (FDTD) calculations, we show that this behavior is linked to the selective excitation of the out-of-plane and in-plane dipolar LSP modes of the NP. This selective excitation is achieved through the lateral position of the tip with respect to the symmetry center of the NP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.