Status epilepticus is a condition resulting either from the failure of the mechanisms responsible for seizure termination or from the initiation of mechanisms that lead to abnormally prolonged seizures and require urgent administration of antiepileptic drugs. Refractory status epilepticus requires anesthetics drugs and may lead to brain injury with molecular and cellular alterations (eg, inflammation, and neuronal and astroglial injury) that could induce neurologic sequels and further development of epilepsy. Outcome scores based on demographic, clinical, and electroencephalography (EEG) condition are available, allowing prediction of the risk of mortality, but the severity of brain injury in survivors is poorly evaluated. New biomarkers are needed to predict with higher accuracy the outcome of patients admitted with status in an intensive care unit. Here, we summarize the findings of studies from patients and animal models of status epilepticus. Specific protein markers can be detected in the cerebrospinal fluid and the blood. One of the first described markers of neuronal death is the neuron‐specific enolase. Gliosis resulting from inflammatory responses after status can be detected through the increase of S100‐beta, or some cytokines, like the High Mobility Group Box 1. Other proteins, like progranulin may reflect the neuroprotective mechanisms resulting from the brain adaptation to excitotoxicity. These new biomarkers aim to prospectively identify the severity and development of disability, and subsequent epilepsy of patients with status. We discuss the advantages and disadvantages of each biomarker, by evaluating their brain specificity, stability in the fluids, and sensitivity to external interferences, such as hemolysis. Finally, we emphasize the need for further development and validation of such biomarkers in order to better assess patients with severe status epilepticus.
Introduction:The current practice of quantifying cerebrospinal fluid (CSF) biomarkers as an aid in the diagnosis of Alzheimer's disease (AD) varies from center to center. For a same biochemical profile, interpretation and reporting of results may differ, which can lead to misunderstandings and raises questions about the commutability of tests.
Methods:We obtained a description of (pre-)analytical protocols and sample reports from 40 centers worldwide. A consensus approach allowed us to propose harmonized comments corresponding to the different CSF biomarker profiles observed in patients.
Results:The (pre-)analytical procedures were similar between centers. There was considerable heterogeneity in cutoff definitions and report comments. We therefore identified and selected by consensus the most accurate and informative comments regarding the interpretation of CSF biomarkers in the context of AD diagnosis.Discussion: This is the first time that harmonized reports are proposed across worldwide specialized laboratories involved in the biochemical diagnosis of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.