Treatment of chronic hepatitis B (CHB) typically requires lifelong administration of drugs. Cohort and preclinical studies have established the link between a functional T-cell-mounted immunity and resolution of infection. TG1050 is an adenovirus 5-based vaccine that expresses HBV polymerase and domains of core and surface antigen and has shown immunogenicity and antiviral effects in mice. We performed a phase 1 clinical trial to assess safety and explore immunogenicity and early efficacy of TG1050 in CHB patients. This randomized, double blind, placebo-controlled study included two sequential phases: one single dose cohort (SD, n = 12) and one multiple (3) doses cohort (MD, n = 36). Patients, virally suppressed under nucleoside(d)tide analog NUC therapy, were randomized 1:1:1 across 3 dose levels (DL) and assigned to receive 10 9 , 10 10 , 10 11 virus particles (vp) of TG1050 and then randomized within each DL to placebo (3:1 and 9:3 vaccines/placebo in each DL, respectively, for the SD and MD cohorts). Cellular (ELISPOT) and antibody responses (anti-Adenovirus), as well as evolution of circulating HBsAg and HBcrAg, were monitored. All doses were well tolerated in both cohorts, without severe adverse event. TG1050 was capable to induce IFN-γ producing T-cells targeting 1 to 3 encoded antigens, in particular at the 10 10 vp dose. Overall, minor decreases of HBsAg were observed while a number of vaccinees reached unquantifiable HBcrAg by end of the study. In CHB patients under NUC, TG1050 exhibited a good safety profile and was capable to induce HBV-specific cellular immune response. These data support further clinical evaluation, especially in combination studies.
No specific biomarkers for prognostication or evaluation of tumour load in melanoma have been reported to our knowledge. MicroRNAs (miRNAs) are strongly implicated in oncogenesis and tumour progression, and their circulating forms have been studied as potential biomarkers in oncology. The aim of this prospective study was to identify a melanoma-specific profile of plasma miRNAs. A screening phase, using RNA microarray, was conducted on plasma from 14 patients with metastatic melanoma and 5 healthy subjects. Selected miRNAs were analysed by RTqPCR in 2 independent training and validation cohorts including, respectively, 29 and 31 patients and 16 and 43 control subjects. A profile of 2 miRNAs (miR-1246 and miR-185) significantly associated with metastatic melanoma with a sensitivity of 90.5% and a specificity of 89.1% was identified. This plasma miRNA profile may become an accurate non-invasive biomarker for melanoma.
TG4010, a Modified Vaccinia virus Ankara (MVA) expressing human mucin1 (MUC1) has demonstrated clinical benefit for patients suffering from advanced non-small cell lung cancer (NSCLC) in combination with chemotherapy. To support its development, preclinical experiments were performed with either TG4010 or β-galactosidase-encoding MVA vector (MVA-βgal) in mice presenting tumors in the lung. Tumor growth was obtained after intravenous injection of CT26 murine colon cancer cells, engineered to express either MUC1 or βgal. Mice showed increased survival rates after repeated intravenous injections of TG4010 or MVA-βgal, compared to an empty MVA control vector. Treatment with MVA vectors led to the accumulation of CD3dimCD8dim T cells, with two subpopulations characterized as KLRG1+CD127− short-lived effector cells (SLECs), and KLRG1−CD127− early effector cells (EECs) comprising cells releasing IFNγ, Granzyme B and CD107a upon antigen-specific peptide stimulation. EECs were characterized by an up-regulation of PD-1. Tumor growth in the diseased lung correlated with the appearance of PD1+ Treg cells that partially disappeared after TG4010 treatment. At late stage of tumor development in the lung, PD-L1 was detected on CD45− tumor cells, on CD4+ cells, including Treg cells, on CD3+CD8+ and CD3dimCD8dim T lymphocytes, on NK cells, on MDSCs and on alveolar macrophages. We demonstrated that targeting the PD-1/PD-L1 pathway with blocking monoclonal antibodies several days after TG4010 treatment, at late stage of tumor development, enhanced the therapeutic protection induced by the vaccine, supporting the ongoing clinical evaluation of TG4010 immunotherapy in combination with Nivolumab.
Despite the existence of the prophylactic Bacille Calmette-Guérin (BCG) vaccine, infection by Mycobacterium tuberculosis (Mtb) remains a major public health issue causing up to 1.8 million annual deaths worldwide. Increasing prevalence of Mtb strains resistant to antibiotics represents an urgent threat for global health that has prompted a search for alternative treatment regimens not subject to development of resistance. Immunotherapy constitutes a promising approach to improving current antibiotic treatments through engagement of the host’s immune system. We designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara (MVA) virus, denoted MVATG18598, which expresses ten antigens classically described as representative of each of different phases of Mtb infection. In vitro analysis coupled with multiple-passage evaluation demonstrated that this vaccine is genetically stable, i.e. fit for manufacturing. Using different mouse strains, we show that MVATG18598 vaccination results in both Th1-associated T-cell responses and cytolytic activity, targeting all 10 vaccine-expressed Mtb antigens. In chronic post-exposure mouse models, MVATG18598 vaccination in combination with an antibiotic regimen decreases the bacterial burden in the lungs of infected mice, compared with chemotherapy alone, and is associated with long-lasting antigen-specific Th1-type T cell and antibody responses. In one model, co-treatment with MVATG18598 prevented relapse of the disease after treatment completion, an important clinical goal. Overall, results demonstrate the capacity of the therapeutic MVATG18598 vaccine to improve efficacy of chemotherapy against TB. These data support further development of this novel immunotherapeutic in the treatment of Mtb infections.
Pre-clinical models mimicking persistent hepatitis B virus (HBV) expression are seldom, do not capture all features of a human chronic infection and due to their complexity, are subject to variability. We report a meta-analysis of seven experiments performed with TG1050, an HBV-targeted immunotherapeutic,1 in an HBV-persistent mouse model based on the transduction of mice by an adeno-associated virus coding for an infectious HBV genome (AAV-HBV). To mimic the clinical diversity seen in HBV chronically infected patients, AAV-HBV transduced mice displaying variable HBsAg levels were treated with TG1050. Overall mean percentages of responder mice, displaying decrease in important clinical parameters i.e. HBV-DNA (viremia) and HBsAg levels, were 52% and 51% in TG1050 treated mice, compared with 8% and 22%, respectively, in untreated mice. No significant impact of HBsAg level at baseline on response to TG1050 treatment was found. TG1050-treated mice displayed a significant shorter Time to Response (decline in viral parameters) with an Hazard Ratio (HR) of 8.3 for viremia and 2.6 for serum HBsAg. The mean predicted decrease for TG1050-treated mice was 0.5 log for viremia and 0.8 log for HBsAg, at the end of mice follow-up, compared to no decrease for viremia and 0.3 log HBsAg decrease for untreated mice. For mice receiving TG1050, a higher decline of circulating viremia and serum HBsAg level over time was detected by interaction term meta-analysis with a significant treatment effect (p = 0.002 and p<0.001 respectively). This meta-analysis confirms the therapeutic value of TG1050, capable of exerting potent antiviral effects in an HBV-persistent model mimicking clinical situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.