Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of ‘minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions.
We consider the dynamics of equilibration of the chemical potential of a fluorophore in a monodisperse emulsion containing droplets with two initially different concentrations of the fluorophore. Although the exchange mechanism involves a single timescale at the droplet (microscopic) level, the organisation of the droplets determines the exchange dynamics at the population (macroscopic) level. The micelle concentration in the continuous phase and the chemistry of the fluorophore control the microscopic exchange rate while the disorder of the initial condition determines the power-law of the long timescale, recovered in a minimal analytical model. We also show here that an additive in the droplet such as Bovine Serum Albumin (BSA) acts on the microscopic exchange rate and slows down the exchange process by increasing the solubility of the fluorophore in the dispersed phase rather than by creating a viscoelastic layer at the droplet interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.