Magma transport in brittle rock occurs by diking. Understanding the dynamics of diking and its observable consequences is essential to deciphering magma propagation in volcanic areas. Furthermore, diking plays a key role in tectonic phenomena such as continental rifting and plate divergence at mid-ocean ridges. Physics-based models of propagating dikes usually involve coupled transport of a viscous fluid with rock deformation and fracture. But the behaviour of dikes is also affected by the exchange of heat with the surroundings and by interaction with rock layering, pre-existing cracks, and the external stress field, among other factors. This complexity explains why existing models of propagating dikes are still relatively rudimentary: they are mainly 2D, and generally include only a subset of the factors described above. Here, we review numerical models on dike propagation focusing on the most recent studies (from the last 15-20 years). We track the influence of two main philosophies, one in which fluid dynamics are taken to control the behavior and the other which focuses on rock fracturing. It appear that uncertainties in the way that rock properties such as fracture toughness vary from laboratory to field scale remains one of the critical issues to be resolved. Finally, we present promising directions of research that include emerging approaches to numerical modeling and insights from hydraulic fracturing as an industrial analogue.
The 15 January 2022 climactic eruption of Hunga volcano, Tonga, produced an explosion in the atmosphere of a size that has not been documented in the modern geophysical record. The event generated a broad range of atmospheric waves observed globally by various ground-based and spaceborne instrumentation networks. Most prominent is the surface-guided Lamb wave (
≲
0.01 Hz), which we observed propagating for four (+three antipodal) passages around the Earth over six days. Based on Lamb wave amplitudes, the climactic Hunga explosion was comparable in size to that of the 1883 Krakatau eruption. The Hunga eruption produced remarkable globally-detected infrasound (0.01–20 Hz), long-range (~10,000 km) audible sound, and ionospheric perturbations. Seismometers worldwide recorded pure seismic and air-to-ground coupled waves. Air-to-sea coupling likely contributed to fast-arriving tsunamis. We highlight exceptional observations of the atmospheric waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.