The persistence of latently infected cells in patients under combinatory antiretroviral therapy (cART) is a major hurdle to HIV-1 eradication. Strategies to purge these reservoirs are needed and activation of viral gene expression in latently infected cells is one promising strategy. Bromodomain and Extraterminal (BET) bromodomain inhibitors (BETi) are compounds able to reactivate latent proviruses in a positive transcription elongation factor b (P-TEFb)-dependent manner. In this study, we tested the reactivation potential of protein kinase C (PKC) agonists (prostratin, bryostatin-1 and ingenol-B), which are known to activate NF-κB signaling pathway as well as P-TEFb, used alone or in combination with P-TEFb-releasing agents (HMBA and BETi (JQ1, I-BET, I-BET151)). Using in vitro HIV-1 post-integration latency model cell lines of T-lymphoid and myeloid lineages, we demonstrated that PKC agonists and P-TEFb-releasing agents alone acted as potent latency-reversing agents (LRAs) and that their combinations led to synergistic activation of HIV-1 expression at the viral mRNA and protein levels. Mechanistically, combined treatments led to higher activations of P-TEFb and NF-κB than the corresponding individual drug treatments. Importantly, we observed in ex vivo cultures of CD8+-depleted PBMCs from 35 cART-treated HIV-1+ aviremic patients that the percentage of reactivated cultures following combinatory bryostatin-1+JQ1 treatment was identical to the percentage observed with anti-CD3+anti-CD28 antibodies positive control stimulation. Remarkably, in ex vivo cultures of resting CD4+ T cells isolated from 15 HIV-1+ cART-treated aviremic patients, the combinations bryostatin-1+JQ1 and ingenol-B+JQ1 released infectious viruses to levels similar to that obtained with the positive control stimulation. The potent effects of these two combination treatments were already detected 24 hours post-stimulation. These results constitute the first demonstration of LRA combinations exhibiting such a potent effect and represent a proof-of-concept for the co-administration of two different types of LRAs as a potential strategy to reduce the size of the latent HIV-1 reservoirs.
The ease of construction of multiple mutant strains in Schizosaccharomyces pombe is limited by the number of available genetic markers. We describe here three new cassettes for PCR-mediated gene disruption that can be used in combination with commonly used fission yeast markers to make multiple gene deletions. The natMX6, hphMX6 and bleMX6 markers give rise to resistance towards the antibiotics nourseothricin (NAT), hygromycin B and phleomycin, respectively. The cassettes are composed of exogenous sequences to increase the frequency of integration at targeted loci, and have a structure similar to the commonly used pFA6a-kanMX6 modular plasmid system. This allows a simple exchange of the kanMX6 marker in existing strains with any of the three new cassettes. Alternatively, oligonucleotide primers designed for the modular kanMX6 cassettes can be used to make the transforming PCR fragments for gene disruption. We illustrate the construction of a mutant strain with six independent gene disruptions, using the novel antibiotic cassettes in combination with existing genetic markers.
SUMMARYNF-κB is essential for effective transcription of primate lentiviral genomes and also activates antiviral host genes. Here, we show that the early protein Nef of most primate lentiviruses enhances NF-κB activation. In contrast, the late protein Vpu of HIV-1 and its simian precursors inhibits activation of NF-κB, even in the presence of Nef. Although this effect of Vpu did not correlate with its ability to interact with β-TrCP, it involved the stabilization of IκB and reduced nuclear translocation of p65. Interestingly, however, Vpu did not affect casein kinase II-mediated phosphorylation of p65. Lack of Vpu was associated with increased NF-κB activation and induction of interferon and interferon-stimulated genes (ISGs) in HIV-1-infected T cells. Thus, HIV-1 and its simian precursors employ Nef to boost NF-κB activation early during the viral life cycle to initiate proviral transcription, while Vpu is used to downmodulate NF-κB-dependent expression of ISGs at later stages.
The positive transcription elongation factor b (P-TEFb) is involved in physiological and pathological events including inflammation, cancer, AIDS, and cardiac hypertrophy. The balance between its active and inactive form is tightly controlled to ensure cellular integrity. We report that the transcriptional repressor CTIP2 is a major modulator of P-TEFb activity. CTIP2 copurifies and interacts with an inactive P-TEFb complex containing the 7SK snRNA and HEXIM1. CTIP2 associates directly with HEXIM1 and, via the loop 2 of the 7SK snRNA, with P-TEFb. In this nucleoprotein complex, CTIP2 significantly represses the Cdk9 kinase activity of P-TEFb. Accordingly, we show that CTIP2 inhibits large sets of P-TEFb-and 7SK snRNA-sensitive genes. In hearts of hypertrophic cardiomyopathic mice, CTIP2 controls P-TEFb-sensitive pathways involved in the establishment of this pathology. Overexpression of the β-myosin heavy chain protein contributes to the pathological cardiac wall thickening. The inactive P-TEFb complex associates with CTIP2 at the MYH7 gene promoter to repress its activity. Taken together, our results strongly suggest that CTIP2 controls P-TEFb function in physiological and pathological conditions. D iscovered in 1995 (1), P-TEFb (CyclinT1/Cdk9) is involved in physiological and pathological transcriptionally regulated events such as cell growth, differentiation, cancer, cardiac hypertrophy, and AIDS (for review, see refs. 2 and 3). It has been suggested to be required for transcription of most RNA polymerase II-dependent genes. However, a recent study suggests that a subset of cellular genes are distinctively sensitive to Cdk9 inhibition (4). P-TEFb is dynamically regulated by both positive and negative regulators. In contrast to Brd4, which is associated with the active form of P-TEFb (5, 6), the 7SK small nuclear RNA (7SK snRNA) and HEXIM1 inhibit Cdk9 activity in the inactive P-TEFb complex (7-10). P-TEFb elongation complexes are crucial for HIV-1 gene transactivation and viral replication. Recently, new P-TEFb complexes containing the HIV-1 Tat protein have been characterized (11, 12), providing evidence for the recruitment of an inactive Tat/P-TEFb complex to the HIV-1 promoter (13). However, defining the diverse nature and functions of the different P-TEFb complexes will require further investigations. The cellular protein CTIP2 (Bcl11b) has been highlighted as a key transcription factor for thymocyte (14,15) and neuron development (16), odontogenesis (17), cancer evolution (18), and HIV-1 gene silencing (19). Besides AIDS, hypertrophic cardiomyopathy is a well-described P-TEFb-dependent pathology (for review, see refs. 20 and 21).Here, we report that CTIP2 represses P-TEFb function as part of an inactive P-TEFb complex. In hearts of hypertrophic cardiomyopathic mice, CTIP2 controls P-TEFb-sensitive pathways involved in the establishment of this pathology. Together with the inactive P-TEFb complex, CTIP2 associates with the β-myosin heavy chain promoter to repress its activity. Thereby, CTIP2 might contrib...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.