Phase imaging with a high-resolution wavefront sensor is considered. This is based on a quadriwave lateral shearing interferometer mounted on a non-modified transmission white-light microscope. The measurement technology is explained both in the scope of wave optics and geometrical optics in order to discuss its implementation on a conventional microscope. In particular we consider the effect of a non spatially coherent source on the phase-image signal-to-noise ratio. Precise measurements of the phase-shift introduced by microscopic beads or giant unilamellar vesicles validate the principle and show the accuracy of the methods. Diffraction limited images of living COS-7 cells are then presented, with a particular focus on the membrane and organelle dynamics.
Single-cell dry mass measurement is used in biology to follow cell cycle, to address effects of drugs, or to investigate cell metabolism. Quantitative phase imaging technique with quadriwave lateral shearing interferometry (QWLSI) allows measuring cell dry mass. The technique is very simple to set up, as it is integrated in a camera-like instrument. It simply plugs onto a standard microscope and uses a white light illumination source. Its working principle is first explained, from image acquisition to automated segmentation algorithm and dry mass quantification. Metrology of the whole process, including its sensitivity, repeatability, reliability, sources of error, over different kinds of samples and under different experimental conditions, is developed. We show that there is no influence of magnification or spatial light coherence on dry mass measurement; effect of defocus is more critical but can be calibrated. As a consequence, QWLSI is a well-suited technique for fast, simple, and reliable cell dry mass study, especially for live cells.
To increase the accuracy of wave-front evaluation, we propose to exploit the natural capability of multiple lateral shearing interferometers to measure simultaneously more than two orthogonal phase derivatives. We also describe a method, based on Fourier-transform analysis, that uses this multiple information to reconstruct the wave-front under study.
The technical challenges and motivations for high-energy, short-pulse generation with NIF-class, Nd:glass laser systems are reviewed. High energy short pulse generation (multi-kilojoule, picosecond pulses) will be possible via the adaptation of chirped pulse amplification laser techniques on the NIF. Development of meter-scale, high efficiency, high-damagethreshold final optics is a key technical challenge. In addition, deployment of HEPW pulses on NIF is constrained by existing laser infrastructure and requires new, compact compressor designs and short-pulse, fiber-based, seed-laser systems. The key motivations for high energy petawatt pulses on NIF is briefly outlined and includes high-energy, x-ray radiography, proton beam radiography, proton isochoric heating and tests of the fast ignitor concept for inertial confinement fusion
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.