In this paper the sea breeze dynamics in Oran agglomeration atmosphere, in the north Algeria, is investigated and analyzed by a numerical simulation of Oran agglomeration atmosphere, using SUBMESO model during diurnal cycle of June 24, 2010, in order to predict the spatio-temporal starting of sea breeze, its intensity and relative direction through atmospheric flow variations analysis, and to evaluate the role of thermal circulations on sea breeze direction, intensity and ventilation and its effect on pollutant transport. The study of this area has not been investigated or analyzed in any framework, the numerical simulation was preceded by a topographic and surface data processing in order to generate the grid simulation, with a specific characteristics used by the SUBEMESO and SM2-U (Soil Model for Sub-Meso scales Urbanized) models. This simulation allowed us to know all sea breeze characteristics during the study period.
The present work, focused on the Atmospheric boundary-layer airflows and their interactions with obstacles, particularly in relation to urban air quality, therefore two passive control methods are represented in barriers solid LBWs (Low Boundary Walls) and crossings under building, in order to investigate the dynamic impacts in the center urban canyon road. These passive control solutions are designed for reducing the concentrations airflows polluted necessary, while a correct air quality in the urban areas. For these reasons, the passageways under building and LBWs models have been performed with a two dimensional numerical ANSYS-CFX code, rendering it ideal for examining the concentration distribution within street canyons of H1/H2 = 0.5-1-1.5 and the dynamics effects of pollution concentrations of vehicle emissions of sulfur hexafluoride (SF6), which it is taken as a tracer gas within the symmetrical urban street canyon. However the Reynolds-averaged Navier–Stokes equations and the k-ɛ turbulence model are applied in order to close the equations system. The results achieved are evidence about the diminishing of the pollutant concentrations normalized in in the leeward and windward of the urban street canyon
The present work, focused on the Atmospheric boundary-layer airflows and their interactions with obstacles, particularly in relation to urban air quality, therefore two passive control methods are represented in barriers solid LBWs (Low Boundary Walls) and crossings under building, in order to investigate the dynamic impacts in the center urban canyon road. These passive control solutions are designed for reducing the concentrations airflows polluted necessary, while a correct air quality in the urban areas. For these reasons, the passageways under building and LBWs models have been performed with a two dimensional numerical ANSYS-CFX code, rendering it ideal for examining the concentration distribution within street canyons of H1/H2 = 0.5-1-1.5 and the dynamics effects of pollution concentrations of vehicle emissions of sulfur hexafluoride (SF6), which it is taken as a tracer gas within the symmetrical urban street canyon. However the Reynolds-averaged Navier–Stokes equations and the k-ɛ turbulence model are applied in order to close the equations system. The results achieved are evidence about the diminishing of the pollutant concentrations normalized in in the leeward and windward of the urban street canyon
In this paper the sea breeze dynamics in Oran agglomeration atmosphere, in the north Algeria, is investigated and analyzed by a numerical simulation of Oran agglomeration atmosphere, using SUBMESO model during diurnal cycle of June 24, 2010, in order to predict the spatio-temporal starting of sea breeze, its intensity and relative direction through atmospheric flow variations analysis, and to evaluate the role of thermal circulations on sea breeze direction, intensity and ventilation and its effect on pollutant transport. The study of this area has not been investigated or analyzed in any framework, the numerical simulation was preceded by a topographic and surface data processing in order to generate the grid simulation, with a specific characteristics used by the SUBEMESO and SM2-U (Soil Model for Sub-Meso scales Urbanized) models. This simulation allowed us to know all sea breeze characteristics during the study period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.