Aims/Introduction: The triglyceride-glucose (TyG) index has been proposed as a reliable and simple marker of insulin resistance. We investigated the association between TyG index and diabetic nephropathy (DN) in patients with type 2 diabetes. Materials and Methods: A consecutive case series of 682 adult patients with type 2 diabetes hospitalized in the Department of Endocrinology at the Tongji Hospital (Wuhan, Hubei, China) from January 2007 to December 2009 was included in this cross-sectional analysis. Receiver operating characteristics curve analysis, correlation analysis and multiple logistic regression analysis were carried out. Results: A total of 232 (34.0%) participants were identified with DN. Compared with the non-DN group, the DN group had longer disease duration, and higher bodyweight, systolic blood pressure, diastolic blood pressure, glycated hemoglobin, triglycerides, total cholesterol, serum uric acid, 24 h-urinary albumin, TyG index and homeostasis model assessment 2 estimates for insulin resistance (HOMA2-IR; P < 0.05 for each). The TyG index with an optimal cutoff point >9.66 showed a higher area under the receiver operating characteristic curve of 0.67 (P = 0.002) than HOMA2-IR (area under the curve 0.61, P = 0.029) on receiver operating characteristic curve analysis for DN identification. Additionally, the TyG index positively correlated with the levels of metabolic indicators (bodyweight, glycated hemoglobin, triglycerides, total cholesterol, serum uric acid, fasting glucose and HOMA2-IR) and natural logarithmic 24 h-urinary albumin (P < 0.05 for each), but not natural logarithm of estimated glomerular filtration rate. On multiple regression analysis, an increased TyG index was shown to be an independent risk factor (odds ratio 1.91, P = 0.001) for DN. Conclusions: The TyG index was independently associated with DN in patients with type 2 diabetes, and was a better marker than HOMA2-IR for identification of DN in type 2 diabetes patients.
Aim: Mangiferin is glucosylxanthone extracted from plants of the Anacardia ceae and Gentianaceae families. The aim of this study was to investigate the effects of mangiferin on Nrf2-antioxidant response element (ARE) signaling and the sensitivity to etoposide of human myeloid leukemia cells in vitro. Methods: Human HL-60 myeloid leukemia cells and mononuclear human umbilical cord blood cells (MNCs) were examined. Nrf2 protein was detected using immunofluorescence staining and Western blotting. Binding of Nrf2 to ARE was examined with electrophoretic mobility shift assay. The level of NQO1 was assessed with real-time RT-PCR and Western blotting. DCFH-DA was used to evaluate intracellular ROS level. Cell proliferation and apoptosis were analyzed using MTT and flow cytometry, respectively. Results: Mangiferin (50 µmol/L) significantly increased Nrf2 protein accumulation in HL-60 cells, particularly in the nucleus. Mangiferin also enhanced the binding of Nrf2 to an ARE, significantly up-regulated NQO1 expression and reduced intracellular ROS in HL60 cells. Mangiferin alone dose-dependently inhibited the proliferation of HL-60 cells. Mangiferin (50 mol/L) did not attenuate etoposide-induced cytotoxicity in HL-60 cells, and combined treatment of mangiferin with low concentration of etoposide (0.8 μg/mL) even increased the cell inhibition rate. Nor did mangiferin change the rate of etoposide-induced apoptosis in HL-60 cells. In MNCs, mangiferin significantly relieved oxidative stress, but attenuated etoposide-induced cytotoxicity. Conclusion: Mangiferin is a novel Nrf2 activator that reduces oxidative stress and protects normal cells without reducing the sensitivity to etoposide of HL-60 leukemia cells in vitro. Mangiferin may be a potential chemotherapy adjuvant.
Aim: To investigate the effects of betulinic acid (BA) on apoptosis and autophagic flux in multiple myeloma cells and the relationship between the two processes. Methods: The proliferation of human multiple myeloma KM3 cells was measured with MTT assay. FITC/PI double-labeled flow cytometry (FCM) and Hoechst 33258 staining were used to analyze the cell apoptosis. Caspase 3, PARP, Beclin1, LC3-II, and P62 were detected using Western blotting. Results: Treatment of KM3 cells with BA (5−25 μg/mL) suppressed the cell proliferation in time-and dose-dependent manners. The IC 50 values at 12, 24, and 36 h were 22.29, 17.36, and 13.06 μg/mL, respectively. BA treatment dose-dependently induced apoptosis of KM3 cells, which was associated with the activation of caspase 3. However, Z-DEVD-FMK, a specific inhibitor of caspase 3, did not decrease, but rather sensitized the cells to BA-induced apoptosis, suggesting an alternative mechanism involved. On other hand, BA treatment dose-dependently increased the accumulation of LC3-II and P62 in KM3 cells, representing the inhibition of autophagic flux. Furthermore, BA treatment dose-dependently downregulated the expression of Beclin 1, an important inducer of autophagy, in KM3 cells. In the presence of BA, Z-DEVD-FMK induced autophagy and increased the amount of LC3-II in KM3 cells, which may occur via attenuating BA-induced decrease in the level of Beclin 1. Similarly, rapamycin, an autophagy inducer, increased the amount of LC3-II in KM3 cells. In the presence of BA, rapamycin caused further increase in the amount of LC3-II. Furthermore, rapamycin sensitized BA-treated KM3 cells to apoptosis. Conclusion:The results demonstrate that BA induces apoptosis and blocks autophagic flux in KM3 cells. Furthermore, in addition to activation of caspase 3, the inhibition of autophagic flux also contributes to the BA-mediated apoptosis of KM3 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.