Abstract:With the popularity of the Internet, the transmission of images has become more frequent. It is of great significance to study efficient and secure image encryption algorithms. Based on traditional Logistic maps and consideration of delay, we propose a new one-dimensional (1D) delay and linearly coupled Logistic chaotic map (DLCL) in this paper. Time delay is a common phenomenon in various complex systems in nature, and it will greatly change the dynamic characteristics of the system. The map is analyzed in terms of trajectory, Lyapunov exponent (LE) and Permutation entropy (PE). The results show that this map has wide chaotic range, better ergodicity and larger maximum LE in comparison with some existing chaotic maps. A new method of color image encryption is put forward based on DLCL. In proposed encryption algorithm, after various analysis, it has good encryption performance, and the key used for scrambling is related to the original image. It is illustrated by simulation results that the ciphered images have good pseudo randomness through our method. The proposed encryption algorithm has large key space and can effectively resist differential attack and chosen plaintext attack.
Considering that a majority of the traditional one-dimensional discrete chaotic maps have disadvantages including a relatively narrow chaotic range, smaller Lyapunov exponents, and excessive periodic windows, a new nonlinearly modulated Logistic map with delay model (NMLD) is proposed. Accordingly, a chaotic map called a first-order Feigenbaum-Logistic NMLD (FL-NMLD) is proposed. Simulation results demonstrate that FL-NMLD has a considerably wider chaotic range, larger Lyapunov exponents, and superior ergodicity compared with existing chaotic maps. Based on FL-NMLD, we propose a new image encryption algorithm that joins the pixel plane and bit-plane shuffle (JPB). The simulation and test results confirm that JPB has higher security than simple pixel-plane encryption and is faster than simple bit-plane encryption. Moreover, it can resist the majority of attacks including statistical and differential attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.