In this paper we introduce and develop the theory of FI-modules. We apply this theory to obtain new theorems about: - the cohomology of the configuration space of n distinct ordered points on an arbitrary (connected, oriented) manifold - the diagonal coinvariant algebra on r sets of n variables - the cohomology and tautological ring of the moduli space of n-pointed curves - the space of polynomials on rank varieties of n x n matrices - the subalgebra of the cohomology of the genus n Torelli group generated by H^1 and more. The symmetric group S_n acts on each of these vector spaces. In most cases almost nothing is known about the characters of these representations, or even their dimensions. We prove that in each fixed degree the character is given, for n large enough, by a polynomial in the cycle-counting functions that is independent of n. In particular, the dimension is eventually a polynomial in n. In this framework, representation stability (in the sense of Church-Farb) for a sequence of S_n-representations is converted to a finite generation property for a single FI-module.Comment: 54 pages. v4: new title, paper completely reorganized; final version, to appear in Duke Math Journa
We develop a theory of convex cocompact subgroups of the mapping class group MCG of a closed, oriented surface S of genus at least 2, in terms of the action on Teichmüller space. Given a subgroup G of MCG defining an extension 1 → π 1 (S) → Γ G → G → 1, we prove that if Γ G is a word hyperbolic group then G is a convex cocompact subgroup of MCG. When G is free and convex cocompact, called a Schottky subgroup of MCG, the converse is true as well; a semidirect product of π 1 (S) by a free group G is therefore word hyperbolic if and only if G is a Schottky subgroup of MCG. The special case when G = Z follows from Thurston's hyperbolization theorem. Schottky subgroups exist in abundance: sufficiently high powers of any independent set of pseudo-Anosov mapping classes freely generate a Schottky subgroup. AMS Classification numbers Primary: 20F67, 20F65Secondary: 57M07, 57S25
The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. It begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn–Nielsen–Baer–theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.