Vascular plants appeared ~410 million years ago then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes (1). We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first non-seed vascular plant genome reported. By comparing gene content in evolutionary diverse taxa, we found that the transition from a gametophyte- to sporophyte-dominated life cycle required far fewer new genes than the transition from a non-seed vascular to a flowering plant, while secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in post-transcriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the tasiRNA pathway and extensive RNA editing of organellar genes.
Root hairs are single cells that develop by tip growth and are specialized in the absorption of nutrients. Their cell walls are composed of polysaccharides and hydroxyproline-rich glycoproteins (HRGPs) that include extensins (EXTs) and arabinogalactan-proteins (AGPs). Proline hydroxylation, an early posttranslational modification of HRGPs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs (which are mainly arabinosylated) and AGPs (which are mainly arabinogalactosylated). We explored the biological function of P4Hs, arabinosyltransferases, and EXTs in root hair cell growth. Biochemical inhibition or genetic disruption resulted in the blockage of polarized growth in root hairs and reduced arabinosylation of EXTs. Our results demonstrate that correct O-glycosylation on EXTs is essential for cell-wall self-assembly and, hence, root hair elongation in Arabidopsis thaliana.
Glucosinolates are natural plant products that function in the defense toward herbivores and pathogens. Plant defense is regulated by multiple signal transduction pathways in which salicylic acid (SA), jasmonic acid, and ethylene function as signaling molecules. Glucosinolate content was analyzed in Arabidopsis wild-type plants in response to single or combinatorial treatments with methyljasmonate (MeJA), 2,6-dichloro-isonicotinic acid, ethylene, and 2,4-dichloro-phenoxyacetic acid, or by wounding. In addition, several signal transduction mutants and the SA-depleted transgenic NahG line were analyzed. In parallel, expression of glucosinolate biosynthetic genes of the CYP79 gene family and the UDPG:thiohydroximate glucosyltransferase was monitored. After MeJA treatment, the amount of indole glucosinolates increased 3-to 4-fold, and the corresponding Trp-metabolizing genes CYP79B2 and CYP79B3 were both highly induced. Specifically, the indole glucosinolate N-methoxy-indol-3-ylmethylglucosinolate accumulated 10-fold in response to MeJA treatment, whereas 4-methoxy-indol-3-ylmethylglucosinolate accumulated 1.5-fold in response to 2,6-dichloro-isonicotinic acid. In general, few changes were seen for the levels of aliphatic glucosinolates, although increases in the levels of 8-methylthiooctyl glucosinolate and 8-methylsulfinyloctyl glucosinolate were observed, particularly after MeJA treatments. The findings were supported by the composition of glucosinolates in the coronatine-insensitive mutant coi1, the ctr1 mutant displaying constitutive triple response, and the SA-overproducing mpk4 and cpr1 mutants. The present data indicate that different indole glucosinolate methoxylating enzymes are induced by the jasmonate and the SA signal transduction pathways, whereas the aliphatic glucosinolates appear to be primarily genetically and not environmentally controlled. Thus, different defense pathways activate subsets of biosynthetic enzymes, leading to the accumulation of specific glucosinolates.Glucosinolates are amino acid-derived natural plant products that function in the defense against herbivores and microorganisms. Upon tissue disruption, e.g. caused by insect feeding, glucosinolates are hydrolyzed by specific thioglucosidases called myrosinases to produce an array of biologically active compounds, typically isothiocyanates, nitriles, and thiocyanates (for review, see Halkier, 1999;Rask et al., 2000). These compounds function as inhibitors of microbial growth (Mari et al., 1993;Manici et al., 1997), as attractants for specialist insects, and as deterrents of generalist herbivores. For humans, glucosinolates are important as flavor compounds, as cancer-preventive agents, and as biopesticides in agriculture.Glucosinolate biosynthesis is considered a threestep process: First, the amino acid may enter the chain elongation pathway, in which the condensing enzymes MAM1 and MAM-L have recently been identified (de Quiros et al., 2000;Kroymann et al., 2001). Second, the core glucosinolate structure is formed (see below); and t...
The glucosinolate composition and content in various tissues of Arabidopsis thaliana (L.) Heynh. ecotype Columbia during development from seeds to bolting plants were determined in detail by high-performance liquid chromatography. Comparison of the glucosinolate profiles of leaves, roots and stems from mature plants with those of green siliques and mature seeds indicated that a majority of the seed glucosinolates were synthesized de novo in the silique. A comparison of the glucosinolate profile of mature seeds with that of cotyledons indicated that a major part of seed glucosinolates was retained in the cotyledons. Turnover of glucosinolates was studied by germination of seeds containing radiolabelled p-hydroxybenzylglucosinolate (p-OHBG). Approximately 70% of the content of [14C]p-OHBG in the seeds was detected in seedlings at the cotyledon stage and [14C]p-OHBG was barely detectable in young plants with rosettes of six to eight leaves. The turn-over of p-OHBG was found to coincide with the expression of the glucosinolate-degrading enzyme myrosinase, which was detectable at very low levels in seedlings at the cotyledon stage, but which dramatically increased in leaves from plants at later developmental stages. This indicates that there is a continuous turnover of glucosinolates during development and not only upon tissue disruption.
(M.M., A.S.) Camalexin represents the main phytoalexin in Arabidopsis (Arabidopsis thaliana). The camalexin-deficient phytoalexin deficient 3 (pad3) mutant has been widely used to assess the biological role of camalexin, although the exact substrate of the cytochrome P450 enzyme 71B15 encoded by PAD3 remained elusive. 2-(Indol-3-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid (dihydrocamalexic acid) was identified as likely intermediate in camalexin biosynthesis downstream of indole-3-acetaldoxime, as it accumulated in leaves of silver nitrate-induced pad3 mutant plants and it complemented the camalexin-deficient phenotype of a cyp79b2/cyp79b3 double-knockout mutant. Recombinant CYP71B15 heterologously expressed in yeast catalyzed the conversion of dihydrocamalexic acid to camalexin with preference of the (S)-enantiomer. Arabidopsis microsomes isolated from leaves of CYP71B15-overexpressing and induced wild-type plants were capable of the same reaction but not microsomes from induced leaves of pad3 mutants. In conclusion, CYP71B15 catalyzes the final step in camalexin biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.