Antagonist radiotracers have shown only a low sensitivity for detecting competition from high-efficacy agonists at opioid receptors (ORs) in vivo. We report that [(11)C]PEO binds with high affinity to mu and kappa-opioid receptors, is a full agonist, and concentrates in brain regions of rats with a high density of the mu-OR after intravenous injection. Blocking studies with mu and kappa-OR selective compounds demonstrated that the binding of [(11)C]PEO is saturable and selective to the mu-OR in rat brain.
The described ICR process is a simple and efficient alternative to classic radiotracer production systems and provides a comparatively cheap instrumental methodology for the repetitive production of [(18)F]FDG with remarkably high efficiency and high yield under fully automated conditions. Although the results concerning the levels of activity need to be confirmed after installation of the equipment in a suitable GMP hot-cell environment, we expect the instrumental design to allow up-scaling without major difficulties or fundamental restrictions. Furthermore, we are convinced that similar or nearly identical procedures, and thus instrumentation, will allow ICR of other (18)F-labelled radiopharmaceuticals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.