Although protein glycosylation systems are becoming widely recognized in bacteria, little is known about the mechanisms and evolutionary forces shaping glycan composition. Species within the genus Neisseria display remarkable glycoform variability associated with their O-linked protein glycosylation (pgl) systems and provide a well developed model system to study these phenomena. By examining the potential influence of two ORFs linked to the core pgl gene locus, we discovered that one of these, previously designated as pglH, encodes a glucosyltransferase that generates unique disaccharide products by using polyprenyl diphosphatelinked monosaccharide substrates. By defining the function of PglH in the glycosylation pathway, we identified a metabolic conflict related to competition for a shared substrate between the opposing glycosyltransferases PglA and PglH. Accordingly, we propose that the presence of a stereotypic, conserved deletion mutation inactivating pglH in strains of Neisseria gonorrhoeae, Neisseria meningitidis, and related commensals, reflects a resolution of this conflict with the consequence of reduced glycan diversity. This model of genetic détente is supported by the characterization of pglH "missense" alleles encoding proteins devoid of activity or reduced in activity such that they cannot exert their effect in the presence of PglA. Thus, glucose-containing glycans appear to be a trait undergoing regression at the genus level. Together, these findings document a role for intrinsic genetic interactions in shaping glycan evolution in protein glycosylation systems.epistasis | oligosaccharide biosynthesis | type IV pili
Bacterial capsular polysaccharides and lipopolysaccharides are well-established ligands of innate and adaptive immune effectors and often exhibit structural and antigenic variability. Although many surfacelocalized glycoproteins have been identified in bacterial pathogens and symbionts, it not clear if and how selection impacts associated glycoform structure. Here, a systematic approach was devised to correlate gene repertoire with protein-associated glycoform structure in Neisseria species important to human health and disease. By manipulating the protein glycosylation (pgl) gene content and assessing the glycan structure by mass spectrometry and reactivity with monoclonal antibodies, it was established that protein-associated glycans are antigenically variable and that at least nine distinct glycoforms can be expressed in vitro. These studies also revealed that in addition to Neisseria gonorrhoeae strain N400, one other gonococcal strain and isolates of Neisseria meningitidis and Neisseria lactamica exhibit broad-spectrum O-linked protein glycosylation. Although a strong correlation between pgl gene content, glycoform expression, and serological profile was observed, there were significant exceptions, particularly with regard to levels of microheterogeneity. This work provides a technological platform for molecular serotyping of neisserial protein glycans and for elucidating pgl gene evolution.It is now well established that protein glycosylation based on both N-and O-linked modifications occurs in bacterial species. In N-linked systems exemplified by the system in Campylobacter jejuni, large numbers of proteins that are translocated to the periplasm are glycosylated based on the presence of sequon elements and asparagine-targeting oligosaccharyltransferases related to those that operate in eukaryotes (21,36,69,73). Two O-linked systems associated with covalent modification of type IV pilin subunits in pathogenic Neisseria species and in selected strains of Pseudomonas aeruginosa have been particularly well characterized (2,16,(46)(47)(48)54). The latter systems are remarkably similar to the N-linked system characterized in C. jejuni in that oligosaccharides are synthesized cytoplasmically as lipid-linked precursors that are then flipped into the periplasm. Protein-targeting oligosaccharyltransferases structurally related to the WaaL family of O-antigen ligases then transfer the oligosaccharides to protein substrates (2,18,49). The similarities between these N-and O-linked systems are perhaps best illustrated by genetic and functional interactions between components of the C. jejuni oligosaccharide biosynthetic machinery and elements of the neisserial pilin glycosylation pathway (2, 18). In contrast, the mechanisms operating in other bacterial O-linked systems are not completely understood yet, and there appears to be considerable diversity in the mechanisms of oligosaccharide synthesis, transfer of the glycan to the protein, and the cellular compartment in which glycan addition takes place. Prime examples of ...
The O-linked protein glycosylation pathway in Neisseria gonorrhoeae is responsible for the synthesis of a complex oligosaccharide on undecaprenyl diphosphate and subsequent en bloc transfer of the glycan to serine residues of select periplasmic proteins. Protein glycosylation (pgl) genes have been annotated on the basis of bioinformatics and top-down mass spectrometry analysis of protein modifications in pgl-null strains (1, 2), but relatively little biochemical analysis has been performed to date. In this report, we present the expression, purification and functional characterization of seven Pgl enzymes. Specifically, the enzymes studied are responsible for synthesis of an uncommon uridine diphosphate (UDP)-sugar (PglD, PglC, and PglB-acetyltransferase domain), glycan assembly (PglB-phospho-glycosyltransferase domain, PglA, PglE, and PglH) and final oligosaccharide transfer (PglO). UDP-2,4-diacetamido-2,4,6-trideoxy-α-D-hexose (DATDH), which is the first sugar in glycan biosynthesis, was produced enzymatically and the stereochemistry was assigned as uridine diphosphate N’-diacetylbacillosamine (UDP-diNAcBac) by NMR characterization. In addition, the substrate specificities of the phospho-glycosyltransferase, glycosyltransferases and oligosaccharyltransferase (OTase) were analyzed in vitro and in most cases, these enzymes showed strong preferences for the native substrates relative to closely related glycans. In particular, PglO, the O-linked OTase, and PglB(Cj), the N-linked OTase from Campylobacter jejuni, preferred the native N. gonorrhoeae or C. jejuni substrates, respectively. This study represents the first comprehensive biochemical characterization of this important O-linked glycosylation pathway and provides the basis for further investigations of these enzymes as antibacterial targets.
Broad-spectrum O-linked protein glycosylation is well characterized in the major Neisseria species of importance to human health and disease. Within strains of Neisseria gonorrhoeae, N. meningitidis, and N. lactamica, protein glycosylation (pgl) gene content and the corresponding oligosaccharide structure are fairly well conserved, although intra-and interstrain variability occurs. The status of such systems in distantly related commensal species, however, remains largely unexplored. Using a strain of deeply branching Neisseria elongata subsp. glycolytica, a heretofore unrecognized tetrasaccharide glycoform consisting of di-Nacetylbacillosamine-glucose-di-N-acetyl hexuronic acid-N-acetylhexosamine (diNAcBac-Glc-diNAcHexA-HexNAc) was identified. Directed mutagenesis, mass spectrometric analysis, and glycan serotyping confirmed that the oligosaccharide is an extended version of the diNAcBac-Glc-based structure seen in N. gonorrhoeae and N. meningitidis generated by the successive actions of PglB, PglC, and PglD and glucosyltransferase PglH orthologues. In addition, a null mutation in the orthologue of the broadly conserved but enigmatic pglG gene precluded expression of the extended glycoform, providing the first evidence that its product is a functional glycosyltransferase. Despite clear evidence for a substantial number of glycoprotein substrates, the major pilin subunit of the endogenous type IV pilus was not glycosylated. The latter finding raises obvious questions as to the relative distribution of pilin glycosylation within the genus, how protein glycosylation substrates are selected, and the overall structurefunction relationships of broad-spectrum protein glycosylation. Together, the results of this study provide a foundation upon which to assess neisserial O-linked protein glycosylation diversity at the genus level. IMPORTANCEBroad-spectrum protein glycosylation systems are well characterized in the pathogenic Neisseria species N. gonorrhoeae and N. meningitidis. A number of lines of evidence indicate that the glycan components in these systems are subject to diversifying selection and suggest that glycan variation may be driven in the context of glycosylation of the abundant and surface-localized pilin protein PilE, the major subunit of type IV pili. Here, we examined protein glycosylation in a distantly related, nonpathogenic neisserial species, Neisseria elongata subsp. glycolytica. This system has clear similarities to the systems found in pathogenic species but makes novel glycoforms utilizing a glycosyltransferase that is widely conserved at the genus level but whose function until now remained unknown. Remarkably, PilE pilin is not glycosylated in this species, a finding that raises important questions about the evolutionary trajectories and overall structure-function relationships of broad-spectrum protein glycosylation systems in bacteria.A rrays of glycoconjugates varying in structure and function predominate at bacterial cell surfaces and extracytoplasmic milieus. Despite their prevalen...
Nuclear receptors and their coactivators are key regulators of numerous physiological functions. GRIP1 (glucocorticoid receptor-interacting protein) is a member of the steroid receptor coactivator family. Here, we show that GRIP1 is regulated by cAMP-dependent protein kinase (PKA) that induces its degradation through the ubiquitin-proteasome pathway. GRIP1 was downregulated in transiently transfected COS-1 cells after treatment with 8-para-chlorophenylthio-cAMP or forskolin and 3-isobutyl-1-methylxanthine and in adrenocortical Y1 cells after incubation with adrenocorticotropic hormone. Pulse-chase experiments with transiently transfected COS-1 cells demonstrated that the half-life of GRIP1 was markedly reduced in cells overexpressing the PKA catalytic subunit, suggesting that activation of PKA increases the turnover of GRIP1 protein. The proteasome inhibitors MG132 and lactacystin abolished the PKA-mediated degradation of GRIP1. Using ts20 cells, a temperature-sensitive cell line that contains a thermolabile ubiquitin-activating E1 enzyme, it was confirmed that PKA-mediated degradation of GRIP1 is dependent upon the ubiquitin-proteasome pathway. Coimmunoprecipitation studies of COS-1 cells transfected with expression vectors encoding GRIP1 and ubiquitin using anti-GRIP1 and anti-ubiquitin antibodies showed that the ubiquitination of GRIP1 was increased by overexpression of PKA. Finally, we show that PKA regulates the intracellular distribution pattern of green fluorescent protein-GRIP1 and stimulates recruitment of GRIP1 to subnuclear foci that are colocalized with the proteasome. Taken together, these data demonstrate that GRIP1 is ubiquitinated and degraded through activation of the PKA pathway. This may represent a novel regulatory mechanism whereby hormones down-regulate a nuclear receptor coactivator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.