As all laboratory equipment ages and contains components that may degrade with time, initial and periodically scheduled performance assessment is required to verify accurate and precise results over the life of the instrument. As veterinary patients may present to general practitioners and then to referral hospitals (both of which may each perform in-clinic laboratory analyses using different instruments), and given that general practitioners may send samples to reference laboratories, there is a need for comparability of results across instruments and methods. Allowable total error (TEa ) is a simple comparative quality concept used to define acceptable analytical performance. These guidelines are recommendations for determination and interpretation of TEa for commonly measured biochemical analytes in cats, dogs, and horses for equipment commonly used in veterinary diagnostic medicine. TEa values recommended herein are aimed at all veterinary settings, both private in-clinic laboratories using point-of-care analyzers and larger reference laboratories using more complex equipment. They represent the largest TEa possible without generating laboratory variation that would impact clinical decision making. TEa can be used for (1) assessment of an individual instrument's analytical performance, which is of benefit if one uses this information during instrument selection or assessment of in-clinic instrument performance, (2) Quality Control validation, and (3) as a measure of agreement or comparability of results from different laboratories (eg, between the in-clinic analyzer and the reference laboratory). These guidelines define a straightforward approach to assessment of instrument analytical performance.
A retrospective study of cases of a unique intramural inflammatory mass within the feline gastrointestinal tract was performed in order to describe and characterize the lesion. Twenty-five cases were identified from archival surgical and postmortem tissues. The lesion most often occurred as an ulcerated intramural mass at the pyloric sphincter (n = 12) or the ileocecocolic junction or colon (n = 9); the remaining cases were in the small intestine. Seven cases also had lymph node involvement. The lesions were characterized by eosinophilic inflammation, large reactive fibroblasts, and trabeculae of dense collagen. Intralesional bacteria were identified in 56% of the cases overall and all of the ileocecocolic junction and colon lesions. Fifty-eight percent of cats tested had peripheral eosinophilia. Cats treated with prednisone had a significantly longer survival time than those receiving other treatments. We propose that this is a unique fibroblastic response of the feline gastrointestinal tract to eosinophilic inflammation that in some cases is associated with bacteria. The lesion is often grossly and sometimes histologically mistaken for neoplasia.
Point-of-care testing (POCT) refers to any laboratory testing performed outside the conventional reference laboratory and implies close proximity to patients. Instrumental POCT systems consist of small, handheld or benchtop analyzers. These have potential utility in many veterinary settings, including private clinics, academic veterinary medical centers, the community (eg, remote area veterinary medical teams), and for research applications in academia, government, and industry. Concern about the quality of veterinary in-clinic testing has been expressed in published veterinary literature; however, little guidance focusing on POCT is available. Recognizing this void, the ASVCP formed a subcommittee in 2009 charged with developing quality assurance (QA) guidelines for veterinary POCT. Guidelines were developed through literature review and a consensus process. Major recommendations include (1) taking a formalized approach to POCT within the facility, (2) use of written policies, standard operating procedures, forms, and logs, (3) operator training, including periodic assessment of skills, (4) assessment of instrument analytical performance and use of both statistical quality control and external quality assessment programs, (5) use of properly established or validated reference intervals, (6) and ensuring accurate patient results reporting. Where possible, given instrument analytical performance, use of a validated 13s control rule for interpretation of control data is recommended. These guidelines are aimed at veterinarians and veterinary technicians seeking to improve management of POCT in their clinical or research setting, and address QA of small chemistry and hematology instruments. These guidelines are not intended to be all-inclusive; rather, they provide a minimum standard for maintenance of POCT instruments in the veterinary setting.
Evidence-based guidelines for the performance of thromboelastography in companion animals were generated through this process. Some of these guidelines are well supported while others will benefit from additional evidence. Many knowledge gaps were identified and future work should be directed to address these gaps and to objectively evaluate the impact of these guidelines on assay comparability within and between centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.