The entorhinal cortex (EC) is the major input and output structure of the hippocampal formation, forming the nodal point in cortico-hippocampal circuits. Different division schemes including two or many more subdivisions have been proposed, but here we will argue that subdividing EC into two components, the lateral EC (LEC) and medial EC (MEC) might suffice to describe the functional architecture of EC. This subdivision then leads to an anatomical interpretation of the different phenotypes of LEC and MEC. First, we will briefly summarize the cytoarchitectonic differences and differences in hippocampal projection patterns on which the subdivision between LEC and MEC traditionally is based and provide a short comparative perspective. Second, we focus on main differences in cortical connectivity, leading to the conclusion that the apparent differences may well correlate with the functional differences. Cortical connectivity of MEC is features interactions with areas such as the presubiculum, parasubiculum, retrosplenial cortex (RSC) and postrhinal cortex, all areas that are considered to belong to the “spatial processing domain” of the cortex. In contrast, LEC is strongly connected with olfactory areas, insular, medial- and orbitofrontal areas and perirhinal cortex. These areas are likely more involved in processing of object information, attention and motivation. Third, we will compare the intrinsic networks involving principal- and inter-neurons in LEC and MEC. Together, these observations suggest that the different phenotypes of both EC subdivisions likely depend on the combination of intrinsic organization and specific sets of inputs. We further suggest a reappraisal of the notion of EC as a layered input-output structure for the hippocampal formation.
Fan cells in layer II of the lateral entorhinal cortex (LEC) form a main component of the projection to the dentate gyrus, CA3 and CA2 of the hippocampal formation. This projection has a counterpart originating from stellate cells in layer II of the medial entorhinal cortex (MEC). Available evidence suggests that the two pathways carry different information, exemplified by a difference in spatial tuning of cells in LEC and MEC. The grid cell, a prominent position-modulated cell type present in MEC, has been postulated to derive its characteristic hexagonal firing pattern from dominant disynaptic inhibitory connections between hippocampal-projecting stellate cells. Given that grid cells have not been described in LEC, we aim to describe the local synaptic connectivity of fan cells, to explore whether the network architecture is similar to that of the MEC stellate cell. Using a combination of in vitro multicell electrophysiological and optogenetic approaches in acute slices from rodents of either sex, we show that excitatory connectivity between fan cells is very sparse. Fan cells connect preferentially with two distinct types of inhibitory interneurons, suggesting disynaptic inhibitory coupling as the main form of communication among fan cells. These principles are similar to those reported for stellate cells in MEC, indicating an overall comparable local circuit architecture of the main hippocampal-projecting cell types in the lateral and medial entorhinal cortex.
The hippocampal formation and entorhinal cortex are crucially involved in learning and memory as well as in spatial navigation. The conservation of these structures across the entire mammalian lineage demonstrates their importance. Information on a diverse set of spatially tuned neurons has become available, but we only have a rudimentary understanding of how anatomical network structure affects functional tuning. Bats are the only order of mammals that have evolved true flight, and with this specialization comes the need to navigate and behave in a three dimensional (3D) environment. Spatial tuning of cells in the entorhinal-hippocampal network of bats has been studied for some time, but whether the reported tuning in 3D is associated with changes in the entorhinal-hippocampal network is not known. Here we investigated the entorhinal-hippocampal projections in the Egyptian fruit bat (Rousettus aegyptiacus), by injecting chemical anterograde tracers in the entorhinal cortex.Detailed analyses of the terminations of these projections in the hippocampus showed that both the medial and lateral entorhinal cortex sent projections to the molecular layer of all subfields of the hippocampal formation. Our analyses showed that the terminal distributions of entorhinal fibers in the hippocampal formation of Egyptian fruit bats-including the proximo-distal and longitudinal topography and the layer-specificity-are similar to what has been described in other mammalian species such as rodents and primates. The major difference in entorhinal-hippocampal projections that was described to date between rodents and primates is in the terminal distribution of the DG projection. We found that bats have entorhinal-DG projections that seem more like those in primates than in rodents. It is likely that the latter projection in bats is specialized to the behavioral needs of this species, including 3D flight and long-distance navigation.
Functionally distinct information encoded by the two main divisions of the entorhinal cortex (EC), the lateral EC (LEC) and the medial EC (MEC), is thought to be first integrated at the level of the hippocampus. Here we examine a circuit connecting MEC to LEC that supports functional interplay at the level of the two entorhinal domains. Using a combination of anatomical, in vitro electrophysiological and behavioral experiments in the mouse, we report that axons from MEC somatostatin-expressing GABAergic neurons densely distribute in layer I of LEC, where they drive strong and near selective inhibition of principal neurons in layer IIa. This inhibitory pathway is accompanied by MEC glutamatergic axons that innervate multiple layers of LEC and preferentially synapse onto principal neurons in layers IIb and III. Our findings indicate that excitatory and inhibitory projections from MEC may separately regulate the activity of different populations of hippocampal-projecting principal neurons in LEC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.