Reported here is the synthesis of a class of semi‐oxamide vinylogous thioesters, designated STEFs, and the use of these agents as new electrophilic warheads. This work includes preparation of simple probes that contain this reactive motif as well as its installation on a more complex kinase inhibitor scaffold. A key aspect of STEFs is their reactivity towards both thiol and amine groups. Shown here is that amine conjugations in peptidic and proteinogenic samples can be facilitated by initial, fast conjugation to proximal thiol residues. Evidence that both the selectivity and the reactivity can be tuned by the structure of STEFs is provided, and given the unique ability of this functionality to conjugate by an addition‐elimination mechanism, STEFs are electrophilic warheads that could find broad use in chemical biology.
Cryogenic electron microscopy (cryo-EM) is a promising method for characterizing the structure of larger RNA structures and complexes. However, the structure of individual aptamers is difficult to solve by cryo-EM due to their low molecular weight and a high signal-to-noise ratio. By placing RNA aptamers on larger RNA scaffolds, the contrast for cryo-EM can be increased to allow the determination of the tertiary structure of the aptamer. Here we use the RNA origami method to scaffold two fluorescent aptamers (Broccoli and Pepper) in close proximity and show that their cognate fluorophores serve as donor and acceptor for FRET. Next, we use cryo-EM to characterize the structure of the RNA origami with the two aptamers to a resolution of 4.4 Å. By characterizing the aptamers with and without ligand, we identify two distinct modes of ligand binding, which are further supported by selective chemical probing. 3D variability analysis of the cryo-EM data show that the relative position between the two bound fluorophores on the origami fluctuate by only 3.5 Å. Our results demonstrate a general approach for using RNA origami scaffolds for characterizing small RNA motifs by cryo-EM and for positioning functional RNA motifs with high spatial precision.
Cyclopropenes are an important new addition to the portfolio of functional groups that can be used for bioorthogonal couplings.T he inert nature of these highly strained compounds in complex biological systems is almost counterintuitive given their established electrophilic properties in organic synthesis.H ere we provide the first demonstration of acyclopropene that is capable of direct conjugation to protein targets in cells and show that this compound preferentially alkylates the active site cysteine of glutathione S-transferase omega-1 (GSTO1).
An organocatalyzed asymmetric [4+2]-cycloaddition between tropolones and electron-deficient dienophiles is presented. Complex and biologically interesting dihydrohomobarrelenone scaffolds are formed through a Diels-Alder reaction utilizing bifunctional Brønsted-base catalysis, affording the corresponding bridged bicyclic cycloadducts in up to quantitative yields with good enantio- (up to 92 % ee) and diastereoselectivity (up to >20:1 d.r.). The synthetic value of the obtained products is explored by downstream transformations, including photoisomerizations, and their biological relevancy by in vivo testing in MCF-7 cancer cells.
Treatment of Staphylococcus aureus biofilm infections using conventional antibiotic therapy is challenging as only doses that are sublethal to the biofilm can be administered safely to patients. A potential solution to this challenge is targeted drug delivery. In this study, we tailored an aptamer-targeted liposomal drug delivery system for accumulation and delivery of antibiotics locally in S. aureus biofilm. In our search for a suitable targeting ligand, we identified six DNA aptamers that bound to S. aureus cells in biofilms, and we demonstrated that one of these aptamers could facilitate accumulation of liposomes around S. aureus cells inside the biofilm. Aptamer-targeted liposomes encapsulating a combination of vancomycin and rifampicin were able to eradicate S. aureus biofilm upon 24 h of treatment in vitro. Our results point to that aptamer-targeted drug delivery of antibiotics is a potential new strategy for treatment of S. aureus biofilm infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.