Oogonia are characterized by diploidy and mitotic proliferation. Human and mouse oogonia express several factors such as OCT4, which are characteristic of pluripotent cells. In human, almost all oogonia enter meiosis between weeks 9 and 22 of prenatal development or undergo mitotic arrest and subsequent elimination from the ovary. As a consequence, neonatal human ovaries generally lack oogonia. The same was found in neonatal ovaries of the rhesus monkey, a representative of the old world monkeys (Catarrhini). By contrast, proliferating oogonia were found in adult prosimians (now called Strepsirrhini), which is a group of ‘lower’ primates. The common marmoset monkey (Callithrix jacchus) belongs to the new world monkeys (Platyrrhini) and is increasingly used in reproductive biology and stem cell research. However, ovarian development in the marmoset monkey has not been widely investigated. Herein, we show that the neonatal marmoset ovary has an extremely immature histological appearance compared with the human ovary. It contains numerous oogonia expressing the pluripotency factors OCT4A, SALL4, and LIN28A (LIN28). The pluripotency factor-positive germ cells also express the proliferation marker MKI67 (Ki-67), which has previously been shown in the human ovary to be restricted to premeiotic germ cells. Together, the data demonstrate the primitiveness of the neonatal marmoset ovary compared with human. This study may introduce the marmoset monkey as a non-human primate model to experimentally study the aspects of primate primitive gonad development, follicle assembly, and germ cell biology in vivo.
Myxoid liposarcoma (MLS) shows extensive intratumoural heterogeneity with distinct subpopulations of tumour cells. Despite improved survival of MLS patients, existing therapies have shortcomings as they fail to target all tumour cells. The nature of chemotherapy‐resistant cells in MLS remains unknown. Here, we show that MLS cell lines contained subpopulations of cells that can form spheres, efflux Hoechst dye and resist doxorubicin, all properties attributed to cancer stem cells (CSCs). By single‐cell gene expression, western blot, phospho‐kinase array, immunoprecipitation, immunohistochemistry, flow cytometry and microarray analysis we showed that a subset of MLS cells expressed JAK–STAT genes with active signalling. JAK1/2 inhibition via ruxolitinib decreased, while stimulation with LIF increased, phosphorylation of STAT3 and the number of cells with CSC properties indicating that JAK–STAT signalling controlled the number of cells with CSC features. We also show that phosphorylated STAT3 interacted with the SWI/SNF complex. We conclude that MLS contains JAK–STAT‐regulated subpopulations of cells with CSC features. Combined doxorubicin and ruxolitinib treatment targeted both proliferating cells as well as cells with CSC features, providing new means to circumvent chemotherapy resistance in treatment of MLS patients.
We use the common marmoset monkey (Callithrix jacchus) as a preclinical nonhuman primate model to study reproductive and stem cell biology. The neonatal marmoset monkey ovary contains numerous primitive premeiotic germ cells (oogonia) expressing pluripotent stem cell markers including OCT4A (POU5F1). This is a peculiarity compared to neonatal human and rodent ovaries. Here, we aimed at culturing marmoset oogonia from neonatal ovaries. We established a culture system being stable for more than 20 passages and 5 months. Importantly, comparative transcriptome analysis of the cultured cells with neonatal ovary, embryonic stem cells, and fibroblasts revealed a lack of germ cell and pluripotency genes indicating the complete loss of oogonia upon initiation of the culture. From passage 4 onwards, however, the cultured cells produced large spherical, free-floating cells resembling oocyte-like cells (OLCs). OLCs strongly expressed several germ cell genes and may derive from the ovarian surface epithelium. In summary, our novel primate ovarian cell culture initially lacked detectable germ cells but then produced OLCs over a long period of time. This culture system may allow a deeper analysis of early phases of female primate germ cell development and—after significant refinement—possibly also the production of monkey oocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.