Aromatic hydrocarbons are among the most important building blocks in the chemical industry. Benzene, toluene and xylenes are obtained from the high temperature thermolysis of alkanes. Higher alkylaromatics are generally derived from arene-olefin coupling, which gives branched products--that is, secondary alkyl arenes--with olefins higher than ethylene. The dehydrogenation of acyclic alkanes to give alkylaromatics can be achieved using heterogeneous catalysts at high temperatures, but with low yields and low selectivity. We present here the first catalytic conversion of n-alkanes to alkylaromatics using homogeneous or molecular catalysts--specifically 'pincer'-ligated iridium complexes--and olefinic hydrogen acceptors. For example, the reaction of n-octane affords up to 86% yield of aromatic product, primarily o-xylene and secondarily ethylbenzene. In the case of n-decane and n-dodecane, the resulting alkylarenes are exclusively unbranched (that is, n-alkyl-substituted), with selectivity for the corresponding o-(n-alkyl)toluene.
Inexpensive cobalt catalysts derived from N-heterocylic carbenes (NHC) allowed efficient catalytic C-H bond arylations on heteroaryl-substituted arenes with widely available aryl chlorides, which set the stage for the preparation of sterically hindered tri-ortho-substituted biaryls. Likewise, challenging direct alkylations with β-hydrogen-containing primary and even secondary alkyl chlorides proceeded on pyridyl- and pyrimidyl-substituted arenes and heteroarenes. The cobalt-catalyzed C-H bond functionalizations occurred efficiently at ambient reaction temperature with excellent levels of site-selectivities and ample scope. Mechanistic studies highlighted that electron-deficient aryl chlorides reacted preferentially, while the arenes kinetic C-H bond acidity was found to largely govern their reactivity.
The adamantyl-substituted pincer-ligand precursor AdPCP-H [(AdPCP = κ3-C6H3-2,6-(CH2PAd2)2); Ad = 1-adamantyl] has been synthesized by the reaction of 1,3-dibromoxylene with di-1-adamantylphosphine in the presence of triethylamine. Treatment of AdPCP-H with [Ir(COD)Cl]2 (COD = 1,5-cyclooctadiene) affords the pincer-ligated complex (AdPCP)IrHCl, which was crystallographically characterized. Dehydrohalogenation of (AdPCP)IrHCl either with LiBEt3H or with KOtBu, under hydrogen atmosphere, yields the hydrides (AdPCP)IrH2 and (AdPCP)IrH4. (AdPCP)IrH2 catalyzes dehydrogenation of alkanes with a level of activity comparable to that of the previously reported (tBuPCP)IrH2, while it is thermally much more robust than the tBuPCP analogue, as well as iPrPCP or tBuPOCOP pincer complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.