Hybrid nanostructures composed of semiconductor and plasmonic metal components are receiving extensive attention. They display extraordinary optical characteristics that are derived from the simultaneous existence and close conjunction of localized surface plasmon resonance and semiconduction, as well as the synergistic interactions between the two components. They have been widely studied for photocatalysis, plasmon-enhanced spectroscopy, biotechnology, and solar cells. In this review, the developments in the field of (plasmonic metal)/semiconductor hybrid nanostructures are comprehensively described. The preparation of the hybrid nanostructures is first presented according to the semiconductor type, as well as the nanostructure morphology. The plasmonic properties and the enabled applications of the hybrid nanostructures are then elucidated. Lastly, possible future research in this burgeoning field is discussed.
Driving catalytic reactions with sunlight is an excellent example of sustainable chemistry. A prerequisite of solar-driven catalytic reactions is the development of photocatalysts with high solar-harvesting efficiencies and catalytic activities. Herein, we describe a general approach for uniformly coating ceria on monometallic and bimetallic nanocrystals through heterogeneous nucleation and growth. The method allows for control of the shape, size, and type of the metal core as well as the thickness of the ceria shell. The plasmon shifts of the Au@CeO2 nanostructures resulting from the switching between Ce(IV) and Ce(III) are observed. The selective oxidation of benzyl alcohol to benzaldehyde, one of the fundamental reactions for organic synthesis, performed under both broad-band and monochromatic light, demonstrates the visible-light-driven catalytic activity and reveals the synergistic effect on the enhanced catalysis of the Au@CeO2 nanostructures.
Novel alpha-MnO2 hollow urchins were synthesized on a large scale by a facile and efficient low-temperature (60 degrees C) mild reduction route, without templates or surfactants in the system. The formation mechanism for the hollow urchins was proved to be the Ostwald ripening process by tracking the crystallization and morphology of the product at different reaction stages. The as-prepared hollow-urchin sample has a high Brunauer-Emmett-Teller surface area of 132 m(2)/g and a mesoporous structure, which were expected to help improve the electrochemical property in Li+ batteries. When the alpha-MnO2 hollow urchins were used as the cathode material in Li batteries, they performed better than the other alpha-MnO2 samples (solid urchins and dispersed nanorods), indicating that the electrochemical performance of the electrode material is sensitive to its morphology. This synthetic procedure is straightforward and inexpensive and thus facilitates mass production of alpha-MnO2 hollow urchins.
ZnO hierarchical microstructures with uniform flower-like morphology were prepared on a large scale through a template-and surfactant-free low-temperature (80 °C) aqueous solution route. The product was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller N 2 adsorption-desorption analyses. The flower-like ZnO microstructures are assembled by many interleaving nanosheets which have the uniform thickness of about 10 nm and a well-crystalline structure with dominant surfaces as {21 j 1 j 0} planes. Control experiments revealed that the formation of the flower-like ZnO was based on the fast nucleation-growth kinetics. The flower-like ZnO sample shows an enhanced photocatalytic performance compared with the other nanostructured ZnO powders of nanoparticles, nanosheets, and nanorods, which can be attributed to the special structural feature with an open and porous nanostructured surface layer that significantly facilitates the diffusion and mass transportation of RhB molecules and oxygen species in photochemical reaction of RhB degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.