Micro-fabricated single-layer graphenes (SLGs) on a silicon dioxide (SiO2)/Si substrate, a silicon nitride (SiN) membrane, and a suspended architecture are presented for their use as temperature sensors. These graphene temperature sensors act as resistance temperature detectors, showing a quadratic dependence of resistance on the temperature in a range between 283 K and 303 K. The observed resistance change of the graphene temperature sensors are explained by the temperature dependent electron mobility relationship (~T−4) and electron-phonon scattering. By analyzing the transient response of the SLG temperature sensors on different substrates, it is found that the graphene sensor on the SiN membrane shows the highest sensitivity due to low thermal mass, while the sensor on SiO2/Si reveals the lowest one. Also, the graphene on the SiN membrane reveals not only the fastest response, but also better mechanical stability compared to the suspended graphene sensor. Therefore, the presented results show that the temperature sensors based on SLG with an extremely low thermal mass can be used in various applications requiring high sensitivity and fast operation.
In this report, a paper-based micro-calorimetric biochemical detection method is presented. Calorimetric detection of biochemical reactions is demonstrated as an extension of current colorimetric and electrochemical detection mechanisms of paper-based biochemical analytical systems. Reaction and/or binding temperature of glucose/glucose oxidase, DNA/hydrogen peroxide, and biotin/streptavidin, are measured by the paper-based micro-calorimeter. Commercially available glucose calibration samples of 0.05, 0.15 and 0.3% wt/vol concentration are used for comparing the device performance with a commercially available glucose meter (electrochemical detection). The calorimetric glucose detection demonstrates a measurement error less than 2%. The calorimetric detection results of DNA concentrations from 0.9 to 7.3 mg/mL and temperature changes in biotin and streptavidin reaction are presented to demonstrate the feasibility of integrating the calorimetric detection method with paper based microfluidic devices.
A microfabricated calorimeter (l-calorimeter) with an enclosed reaction chamber is presented. The 3D micromachined reaction chamber is capable of analyzing liquid samples with volume of 200 nl. The thin film low-stress silicon nitride membrane is used to reduce thermal mass of the calorimeter and increase the sensitivity of system. The l-calorimeter has been designed to perform DC and AC calorimetry, thermal wave analysis, and differential scanning calorimetry. The l-calorimeter fabricated with an integrated heater and a temperature sensor on opposite sides of the reaction chamber allows to perform thermal diffusivity and specific heat measurements on liquid samples with same device. Measurement results for diffusivity and heat capacitance using time delay method and thermal wave analysis are presented. V C 2014 AIP Publishing LLC. [http://dx
Antimicrobial resistance is a growing problem, necessitating rapid antimicrobial susceptibility testing (AST) to enable effective in-clinic diagnostic testing and treatment. Conventional AST using broth microdilution or the Kirby−Bauer disk diffusion are time-consuming (e.g., 24−72 h), labor-intensive, and costly and consume reagents. Here, we propose a novel gradientbased microchamber microfluidic (GM 2 ) platform to perform AST assay for a wide range of antibiotic concentrations plus zero (positive control) and maximum (negative control) concentrations all in a single test. Antibiotic lateral diffusion within enriched to depleted (C max and zero, respectively) cocurrent flowing fluids, moving alongside a micron-sized main channel, is led to form an antibiotic concentration profile in microchambers, connected to the depleted side of the main channel. We examined the tunability of the GM 2 platform, in terms of producing a wide range of antibiotic concentrations in a gradient mode between two consecutive microchambers with changing either the loading fluids' flow rates or their initial concentrations. We also tested the GM 2 platform for profiling bacteria associated with human Crohn's disease and bovine mastitis. Time to result for performing a complete AST assay was ∼ 3−4 h in the GM 2 platform. Lastly, the GM 2 platform tracked the bacterial growth independent of an antibiotic mechanism of action or bacterial species in a robust and easy-to-implement fashion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.