Severe volume expansion and inherently poor lithium ion transmission are two major problems of silicon anodes. To address these issues, we proposed a pomegranate-type Si/C composite anode with highly dispersed tiny silicon particles as the core assisted by small amount of SiC. Skillfully exploiting the high heat from magnesiothermic reduction, SiC can assist the good dispersion of silicon and provide good interface compatibility and chemical stability. The silicon anchored to the carbon shell provides multipoint contact mode, that together with the carbon shell frame, significantly promoting the transfer of dual charge. Besides, the pomegranate-type microcluster structure also improves the tap density of the electrode, reduces the direct contact area between active material and electrolyte, and enhances the electrochemical performance.
With the rapid development of information technology, electromagnetic equipment has been widely used in medical diagnostics, meteorological radar, mobile communications, military aerospace, and other related fields in recent years. 1-5 However, the adverse radiation effects on the human body caused by the application of electromagnetic microwave in military and civilian related fields have made electromagnetic absorbing (EMA) materials gradually become the focus of public attention. 6-8 Especially for the defense military industry, excellent radar absorbing materials need to meet the minimum reflection coefficient (RC min , when RC< −10 dB, has over 90% electromagnetic wave (EMW) attenuation) as low as possible and the widest efficient absorption bandwidth
Poor intrinsic conductivity and the presence of irreversible lithiation phase affect the electrochemical performance of silicon oxycarbide anode materials. Even though it can be improved by increasing free carbon content or composition, scarification of reversible capacity and initial Coulombic efficiency (ICE) remain as challenge. Here, polycarbosilane (PCS) with alternating distribution of silicon and carbon atoms is employed as precursor of SiOC ceramics. Air oxidation cross‐linking is used to regulate the content of oxygen and carbon elements in PCS at atom level, so as to explore a solution to improve the intrinsic conductivity and reversible lithium phase content of SiOC ceramics. This strategy provides extremely excellent rate capability, areal/volumetric capacity, and ICE. This is also the first concept for feasible precursor structure design to control the SiOC glass phase and regulate the growth of C nanoribbon that can improve the intrinsic conductivity and reversible capacity of SiOC ceramic anode materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.