An intelligent reflecting surface (IRS) is a programmable device that can be used to control electromagnetic waves propagation by changing the electric and magnetic properties of its surface. Therefore, IRS is considered a smart technology for the sixth generation (6G) of communication networks. In addition, machine learning (ML) techniques are now widely adopted in wireless communication as the computation power of devices has increased. As it is an emerging topic, we provide a comprehensive overview of the state-of-the-art on ML, especially on deep learning (DL)-based IRS-enhanced communication. We focus on their operating principles, channel estimation (CE), and the applications of machine learning to IRS-enhanced wireless networks. In addition, we systematically survey existing designs for IRS-enhanced wireless networks. Furthermore, we identify major issues and research opportunities associated with the integration of IRS and other emerging technologies for applications to next-generation wireless communication.
A cell-free massive multiple input multiple output (MIMO) system is an attractive network model that is in the spotlight in 5G and future communication systems. Despite numerous advantages, the cell-free massive MIMO system has a problem in that it is difficult to operate in reality due to its vast amount of calculation. The user-centric cell-free massive MIMO model has a more feasible and scalable benefit than the cell-free massive MIMO model. However, this model has the disadvantage that as the number of users in the area increases, there are users who do not receive the service. In this paper, the proposed scheme creates connections for unserved users under a user-centric scheme without additional access point (AP) installation and disconnection for existing users. A downlink user-centric cell-free massive MIMO system model in which the APs are connected to the central processing unit (CPU) and the APs and users are geographically distributed is considered. First, the downlink spectral efficiency formula is derived and applied to the user-centric cell-free massive MIMO system. Then, the proposed scheme and power control algorithm are applied to the derived formula. The simulation results show that the unserved users within the area disappear by using the proposed scheme, while the bit error rate (BER) performance and sum rate improve compared to the existing scheme. In addition, it is shown that the proposed scheme works well even with a very large number of users in the area, and a significant service performance improvement for the worst 10% of users and the overall improvement of per-user throughput for the bottom 70% of users are ensured.
With the rapid evolution of Internet of things (IoT), many edge devices require simultaneous connection in 5G communication era. To afford massive data of IoT devices, multiple input multiple output non-orthogonal multiple access (MIMO-NOMA) method has been considered as a promising technology. However, there are numerous drawbacks due to error propagation and inter-user interferences. Therefore, proposed scheme aims to improve the reliability of the MIMO-NOMA system with digital beamforming and intracluster cooperative multi point (CoMP) to efficiently support IoT system. In the conventional MIMO-NOMA system, user entities are grouped into clusters. Block diagonalization (BD) is applied to efficiently eliminate the inter-cluster interference of the MIMO-NOMA system. However, since the channel path of the data stream from a single antenna to a single cluster doesn't hold other cluster's data, the system can't fully utilize the selective subcarrier channel states. It indicates that there can be better channel paths for a data stream at a certain subcarrier index. Therefore, proposed scheme allocates data streams to antennas adaptively considering selective channel states. Additionally, intra-cluster CoMP method is adjusted to enhance the reliability of the system in the clusters. The simulation results show that the proposed scheme improves BER and throughput performance compared to the conventional MIMO-NOMA system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.