Using scanning confocal microscopy, we measure the backscattered second harmonic signal generated by a 100 fs laser in rat-tail tendon collagen. Damage to the sample is avoided by using a continuous scanning technique, rather than measuring the signal at discrete points. The second harmonic signal varies by about a factor of 2 across a single cross section of the rat-tail tendon fascicle. The signal intensity depends both on the collagen organization and the backscattering efficiency. This implies that we cannot use intensity measurements alone to characterize collagen structure. However, we can infer structural information from the polarization dependence of the second harmonic signal. Axial and transverse scans for different linear polarization angles of the input beam show that second harmonic generation (SHG) in the rat-tail tendon depends strongly on the polarization of the input laser beam. We develop an analytical model for the SHG as a function of the polarization angle in the rat-tail tendon. We apply this model in determining the orientation of collagen fibrils in the fascicle and the ratio gamma between the two independent elements of the second-order nonlinear susceptibility tensor. There is a good fit between our model and the measured data.
We report the fabrication of an encapsulated, high-performance, stretchable array of stacked planar micro-supercapacitors (MSCs) as a wearable energy storage device for waterproof applications. A pair of planar all-solid-state MSCs with spray-coated multiwalled carbon nanotube electrodes and a drop-cast UV-patternable ion-gel electrolyte was fabricated on a polyethylene terephthalate film using serial connection to increase the operation voltage of the MSC. Additionally, multiple MSCs could be vertically stacked with parallel connections to increase both the total capacitance and the areal capacitance owing to the use of a solid-state patterned electrolyte. The overall device of five parallel-connected stacked MSCs, a microlight-emitting diode (μ-LED), and a switch was encapsulated in thin Ecoflex film so that the capacitance remained at 82% of its initial value even after 4 d in water; the μ-LED was lit without noticeable decrease in brightness under deformation including bending and stretching. Furthermore, an Ecoflex encapsulated oximeter wound around a finger was operated using the stored energy of the MSC array attached to the hand (even in water) to give information on arterial pulse rate and oxygen saturation in the blood. This study suggests potential applications of our encapsulated MSC array in wearable energy storage devices especially in water.
In recent years, many methods have been investigated to improve imaging speed in photoacoustic microscopy (PAM). These methods mainly focused upon three critical factors contributing to fast PAM: laser pulse repetition rate, scanning speed, and computing power of the microprocessors. A high laser repetition rate is fundamentally the most crucial factor to increase the PAM speed. In this paper, we review methods adopted for fast PAM systems in detail, specifically with respect to light sources. To the best of our knowledge, ours is the first review article analyzing the fundamental requirements for developing high-speed PAM and their limitations from the perspective of light sources.
Ablation characteristics of ultrashort laser pulses were investigated for pulse durations in the range of 130 fs-10 ps. Tissue samples used in the study were dental hard tissue (dentin) and water. We observed differences in ablation crater morphology for craters generated with pulse durations in the 130 fs-1 ps and the 5 ps-10 ps range. For the water experiment, the surface ablation and subsequent propagation of stress waves were monitored using Mach-Zehnder interferometry. For 130 fs-1 ps, energy is deposited on the surface while for longer pulses the beam penetrates into the sample. Both studies indicate that a transition occurs between 1 and 5 ps.
Theoretical and experimental studies of second-harmonic generation (SHG) in biological tissues was performed by use of ultrashort laser pulses (<1 ps). A simplified one-dimensional model for the generation and the propagation of frequency-doubled light inside tissue was developed. This model was tested in vitro against measurements of pig and chicken tissue and human tooth. The experimental results indicate that the intensity of SHG varies significantly among tissue types and between test sites in individual tissue. Possibilities of using this nonlinear tissue property in imaging and diagnostics are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.