We present viral evolution as a novel and powerful method to optimize non-viral proteins. We used this approach to optimize the tetracycline (Tc)-regulated gene expression system (Tet system) for its function in mammalian cells. The components of the Tet system were incorporated in the human immunodeficiency virus (HIV)-1 virus such that viral replication is controlled by this regulatory system. Upon long term replication of this HIV-rtTA virus in human T cells, we obtained a virus variant with an enhanced replication potential resulting from an improved rtTA component of the introduced Tet system. We identified a single amino acid exchange, F86Y, which enhances the transcriptional activity and doxycycline (dox) sensitivity of rtTA. We generated a new rtTA variant that is 5-fold more active at high dox levels than the initial rtTA, and 25-fold more sensitive to dox, whereas the background activity in the absence of dox is not increased. This new rtTA variant will be very useful in biological applications that require a more sensitive or active Tet system. Our results demonstrate that the viral evolution strategy can be used to improve the activity of genes by making them an integral and essential part of the virus.Technology for the regulation of gene expression in mammalian cells and tissues is of primary importance for a wide variety of basic and applied biological research areas, including functional genomics, gene therapy, animal models for human diseases, and biopharmaceutical protein production. All these applications require that production of the protein(s) of interest be regulated in both a quantitative and temporal way. For this purpose, artificial gene expression systems have been developed that are controlled by effector molecules in a dose-dependent and reversible manner. The most frequently used regulatory circuit is the so-called Tet system, which allows stringent control of gene expression by tetracycline (Tc) 1 or its derivative doxycycline (dox) (1-3). The Tet system is based on the specific, high affinity binding of the Escherichia coli Tet repressor protein (TetR) to the tet operator (tetO) sequence. Tc and dox induce a conformational change in TetR, which impedes the interaction with tetO. Fusion of the activation domain of the herpes simplex virus VP16 protein to TetR resulted in the transcriptional activator tTA, which induces gene expression from promoters placed downstream of tetO elements (P tet ) in eukaryotic cells. The presence of Tc or dox abolishes this gene expression. A tTA variant with four amino acid substitutions in the TetR moiety exhibits a reverse phenotype (4). This reverse tTA (rtTA) binds to P tet , and activates gene expression in the presence of dox but not in its absence. The Tet system is now widely applied to control gene expression in eukaryotes, including mammals, plants, and insects (reviewed in Ref. 1). Since the Tet system originates from a bacterial regulatory system, it seems likely that the components can be optimized for their new transcriptional function i...
Chimeric human immunodeficiency virus type 1 (HIV-1) molecular clones differing only in the envelope V3 region were constructed. The V3 regions were derived from two HIV-1 isolates with a non-syncytium-inducing, non-T-cell-tropic phenotype and from four HIV-1 isolates with a syncytium-inducing, T-cell-tropic phenotype. When assayed in SupT1 cells, the two chimeric viruses with a V3 region derived from the non-syncytium-inducing isolates did not induce syncytia and showed a low level of replication. The four chimeric viruses with a V3 region derived from the syncytium-inducing isolates did induce syncytia and replicated efficiently in SupT1 cells. In A3.01 cells, which do not support syncytium formation, the V3 loop affected replication similarly. Upon prolonged culture in SupT1 cells, the phenotype of a non-syncytium-inducing, low-replicating chimeric HIV-1 converted into a syncytium-inducing, high-replicating phenotype. Mutations within the usually conserved GPGR tip of the loop, which were shown to be responsible for the conversion into the syncytium-inducing, high-replicating phenotype, had occurred. In vitro mutagenesis showed that coupled changes of amino acids at both sides of the tip of the V3 loop were able to convert the viral phenotype from non-syncytium-inducing, low replicating into syncytium inducing, high replicating. Our data show that the V3 loop is involved in both syncytium forming and replicative capacity of HIV-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.