Little is known about the regulation
of nonapoptotic cell death.
Using massive insertional mutagenesis of haploid KBM7 cells we identified
nine genes involved in small-molecule-induced nonapoptotic cell death,
including mediators of fatty acid metabolism (ACSL4) and lipid remodeling (LPCAT3) in ferroptosis.
One novel compound, CIL56, triggered cell death dependent upon the
rate-limiting de novo lipid synthetic enzyme ACC1.
These results provide insight into the genetic regulation of cell
death and highlight the central role of lipid metabolism in nonapoptotic
cell death.
Cell growth and proliferation are tightly linked to nutrient availability. The mechanistic target of rapamycin complex 1 (mTORC1) integrates the presence of growth factors, energy levels, glucose and amino acids to modulate metabolic status and cellular responses1-3. mTORC1 is activated at the surface of lysosomes by the RAG GTPases and the Ragulator complex through a not fully understood mechanism monitoring amino acid availability in the lysosomal lumen and involving the vacuolar H+ -ATPase 4-8. Here we describe the uncharacterized human member 9 of the solute carrier family 38 (SLC38A9) as a lysosomal membrane-resident protein competent in amino acid transport. Extensive functional proteomic analysis established SLC38A9 as an integral part of the Ragulator/RAG GTPases machinery. Gain of SLC38A9 function rendered cells resistant to amino acid withdrawal, while loss of SLC38A9 expression impaired amino acid-induced mTORC1 activation. Thus SLC38A9 is a physical and functional component of the amino acid-sensing machinery that controls the activation of mTOR.
Solute carrier (SLC) membrane transport proteins control essential physiological functions, including nutrient uptake, ion transport, and waste removal. SLCs interact with several important drugs, and a quarter of the more than 400 SLC genes are associated with human diseases. Yet, compared to other gene families of similar stature, SLCs are relatively understudied. The time is right for a systematic attack on SLC structure, specificity, and function, taking into account kinship and expression, as well as the dependencies that arise from the common metabolic space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.