Intraoperative application of the stromal vascular fraction (SVF) of adipose tissue requires a fast and efficient isolation procedure of adipose tissue. This review was performed to systematically assess and compare procedures currently used for the intraoperative isolation of cellular SVF (cSVF) and tissue SVF (tSVF) that still contain the extracellular matrix. Pubmed, EMBASE and the Cochrane central register of controlled trials databases were searched for studies that compare procedures for intraoperative isolation of SVF (searched 28 September 2016). Outcomes of interest were cell yield, viability of cells, composition of SVF, duration, cost and procedure characteristics. Procedures were subdivided into procedures resulting in a cSVF or tSVF. Thirteen out of 3038 studies, evaluating 18 intraoperative isolation procedures, were considered eligible. In general, cSVF and tSVF intraoperative isolation procedures had similar cell yield, cell viability and SVF composition compared to a nonintraoperative (i.e. culture laboratory-based collagenase protocol) control group within the same studies. The majority of intraoperative isolation procedures are less time consuming than nonintraoperative control groups, however. Intraoperative isolation procedures are less time-consuming than nonintraoperative control groups with similar cell yield, viability of cells and composition of SVF, and therefore more suitable for use in the clinic. Nevertheless, none of the intraoperative isolation procedures could be designated as the preferred procedure to isolate SVF.
One of the ways to reconstruct a nerve defect is to use a biodegradable nerve guide. The aim of this study was to establish a nerve guide constructed of an amorphous copolymer of lactic acid-caprolactone. A pilot study was set up to elucidate the effect of the tube dimensions on nerve regeneration. Four types of nerve guides, with internal diameters ranging from 1.12-1.23 mm and wall thicknesses ranging from 0.34-0.68, were tested for this purpose. We evaluated the biodegradation, foreign body reaction and nerve regeneration by light microscopy, after three different implantation times (1, 2, and 3 months). After 2 months, we observed that all types of nerve guides had changed from a transparent to an opaque and swollen state, and that they had lost their strength. The foreign body reaction was characterized by the presence of giant cells and fibroblasts surrounding the degrading nerve guide. From this pilot study, we conclude that nerve guide type 1, with an internal diameter of 1.23 mm and a wall thickness of 0.34 mm, can ensure nerve regeneration in the case of a 1-cm gap in the sciatic nerve of the rat. Nerve guides types 3 and 4, with relatively small lumens, show nerve compression due to a more pronounced swelling of the degrading tube.
Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obtained by dissociation of adipose tissue, either enzymatically or mechanical. Enzymatic dissociation procedures are time‐consuming and expensive. Therefore, we developed a new inexpensive mechanical dissociation procedure to obtain the stromal vascular fraction from adipose tissue in a time sparing way, which is directly available for therapeutic injection. This mechanical dissociation procedure is denoted as the fractionation of adipose tissue (FAT) procedure. The FAT procedure was performed in eleven patients. The composition of the FAT‐stromal vascular fraction was characterized by immunohistochemistry. Adipose derived stromal cells isolated from the FAT‐stromal vascular fraction were compared with adipose derived stromal cells isolated from nondissociated adipose tissue (control) for their CD‐surface marker expression, differentiation and colony forming unit capacity. Case reports demonstrated the therapeutic effect of the FAT‐stromal vascular fraction. The FAT‐stromal vascular fraction is an enrichment of extracellular matrix containing a microvasculature and culturable adipose derived stromal cells. Adipose derived stromal cells isolated from FAT‐stromal vascular fraction did not differ from adipose derived stromal cells isolated from the control group in CD‐surface marker expression, differentiation and colony forming unit capacity. The FAT procedure is a rapid effective mechanical dissociation procedure to generate FAT‐stromal vascular fraction ready for injection with all its therapeutic components of adipose tissue: it contains culturable adipose derived stromal cells embedded in their natural supportive extracellular matrix together with the microvasculature.
Lipofilling or lipografting is a novel and promising treatment method for reduction or prevention of dermal scars after injury. Ample anecdotal evidence from case reports supports the scar‐reducing properties of adipose tissue grafts. However, only a few properly controlled and designed clinical trials have been conducted thus far on this topic. Also, the underlying mechanism by which lipofilling improves scar aspect and reduces neuropathic scar pain remains largely undiscovered. Adipose‐derived stromal or stem cells (ADSC) are often described to be responsible for this therapeutic effect of lipofilling. We review the recent literature and discuss anticipated mechanisms that govern anti‐scarring capacity of adipose tissue and its ADSC. Both clinical and animal studies clearly demonstrated that lipofilling and ADSC influence processes associated with wound healing, including extracellular matrix remodelling, angiogenesis and modulation of inflammation in dermal scars. However, randomized clinical trials, providing sufficient level of evidence for lipofilling and/or ADSC as an anti‐scarring treatment, are lacking yet warranted in the near future. © 2017 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.