Abradable materials are widely used as a coating within compressor and turbine stages of modern aircraft engines in order to reduce operating blade-tip/casing clearances and thus maximize the engine energy efficiency. However, recent investigations revealed that the interaction between a blade and these materials may threaten blades structural integrity. Consequently, there is a need for a better understanding of the physical phenomena at play and for an accurate modelling of the interaction in order to predict hazardous events. The cornerstone of related numerical investigations lies in the modelling of the abradable coating removal due to the blade/abradable coating interaction and the associated contact forces along the contact interface. In this context, this article presents a macroscopic model for abradable coating removal accounting for key wear mechanisms including adhesive wear, abrasive wear, micro-rupture wear and machining wear. It is coupled with an in-house numerical strategy for the modelling of full 3D blade/abradable coating interactions within turbomachines and applied to an aircraft engine. Numerical results are compared with respect to existing models and available experimental data. The applicability of the proposed model for 3D interaction simulations is underlined as well as the consistency of the obtained results with experimental observations.
International audienceAbradable materials are widely used as coatings within compressor and turbine stages of modern aircraft engines in order to reduce operating blade-tip/casing clearances and thus maximize energy efficiency. However, rubbing occurrences between blade tips and coating liners may lead to high blade vibratory levels and endanger their structural integrity through fatigue mechanisms. Accordingly, there is a need for a better comprehension of the physical phenomena at play and for an accurate modeling of the interaction, in order to predict potentially unsafe events. To this end, this work introduces a phenomenological model of the abradable coating removal based on phenomena reported in the literature and accounting for key frictional and wear mechanisms including plasticity at junctions, ploughing, micro-rupture and machining. It is implemented within an in-house software solution dedicated to the prediction of full three-dimensional blade/abradable coating interactions within an aircraft engine low pressure compressor. Two case studies are considered. The first one compares the results of an experimental abradable test rig and its simulation. The second one deals with the simulation of interactions in a complete low-pressure compressor. The consistency of the model with experimental observations is underlined, and the impact of material parameter variations on the interaction and wear behavior of the blade is discussed. It is found that even though wear patterns are remarkably robust, results are significantly influenced by abradable coating material properties
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.