Rocky shore intertidal communities along the cold- and warm-temperate coasts of the south-western Atlantic are dominated by small mussels of the genus Brachidontes s.l. (Mytilidae), yet the status of species occurring in the region remains unresolved. Taxonomic studies have been based on shell morphology, but high phenotypic variability has led to much confusion. Based on mitochondrial and nuclear genes (COI, 28S rDNA and ITS1) from nine localities in Uruguay and Argentina we confirmed the occurrence of three species in the south-western Atlantic: Brachidontes darwinianus and B. rodriguezii in the warm-temperate and B. purpuratus in the cold-temperate sector. The latter two species coexist in the same beds along the transition zone (41–43°S). The phylogeny based on mitochondrial and nuclear genes, indicate an early divergence of B. purpuratus. At the intra-specific level, low genetic differentiation and absence of fossil record for B. purpuratus from the earlier Quaternary marine terraces of Patagonia likely result from a relatively recent (post-LGM) colonization originated from populations in the south-eastern Pacific. In the case of B. rodriguezii, by contrast, genetic intraspecific differentiation, a fossil record of phenotypically-related forms going back to the Late Miocene, and phylogenetic position in the COI-based phylogeny, prompts the hypothesis that this species is derived from a local stock with a long history of occurrence in the warm-temperate region of the south-western Atlantic. While intertidal mussel beds from the south-western Atlantic are ecologically similar in appearance, their assembly involves components clearly differentiated in terms of historical biogeography and phylogeny.
Antitropicality is a distribution pattern where closely related taxa are separated by an intertropical latitudinal gap. Two potential examples include Brachidontes darwinianus (south eastern Brazil to Uruguay), considered by some authors as a synonym of B. exustus (Gulf of Mexico and the Caribbean), and B. solisianus, distributed along the Brazilian coast with dubious records north of the intertropical zone. Using two nuclear (18S and 28S rDNA) and one mitochondrial gene (mtDNA COI), we aimed to elucidate the phylogeographic and phylogenetic relationships among the scorched mussels present in the warm‐temperate region of the southwest Atlantic. We evaluated a divergence process mediated by the tropical zone over alternative phylogeographic hypotheses. Brachidontes solisianus was closely related to B. exustus I, a species with which it exhibits an antitropical distribution. Their divergence time was approximately 2.6 Ma, consistent with the intensification of Amazon River flow. Brachidontes darwinianus, an estuarine species is shown here not to be related to this B. exustus complex. We suspect ancestral forms may have dispersed from the Caribbean to the Atlantic coast via the Trans‐Amazonian seaway (Miocene). The third species, B rodriguezii is presumed to have a long history in the region with related fossil forms going back to the Miocene. Although scorched mussels are very similar in appearance, their evolutionary histories are very different, involving major historical contingencies as the formation of the Amazon River, the Panama Isthmus, and the last marine transgression.
This study addresses aspects of the phylogenetic relationships of the commercial Tehuelche scallop, Aequipecten tehuelchus s.l. (Bivalvia: Pectinidae), from southern South America using molecular techniques. The Tehuelche scallop presents two different putative subspecies, A. t. tehuelchus and A. t. madrynensis, and a potentially related sympatric species, Flexopecten felipponei. The Tehuelche scallop is a very important component of ecosystems and is the target of artisanal fisheries in the northern Patagonian gulfs of Argentina. Despite its importance, the systematic relationships of these taxa have not been fully addressed. The main goal of this study is to place the Tehuelche scallop within a partial phylogenetic framework of the family Pectinidae. Scallops were sampled at 10 localities distributed along the south-western Atlantic Ocean. Phylogenetic reconstructions were carried out from two mitochondrial (12S rRNA and 16S rRNA) and two nuclear markers (28S rRNA and H3) using Bayesian, maximum likelihood and maximum parsimony analyses. Our phylogenetic analysis indicates that the two putative subspecies of the Tehuelche scallop together with F. felipponei form a monophyletic clade, without differentiating at the specific level. Observed differences would be the result of phenotypic plasticity, probably caused by environmental factors. However, further analysis using genes with faster evolution rate are needed to corroborate it. Our phylogenetic analysis resolved to Aequipecten as polyphyletic. The Tehuelche scallop has a basal position within the Argopecten group and we recommend that it should be transferred to this genus. The relationship between the hypotheses about the origin of the Tehuelche scallop implicit in the literature and our results are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.