Since its emergence late in 2019, the COVID-19 pandemic continues to exude major public health and socio-economic burden globally. South Africa is currently the epicenter for the pandemic in Africa. This study is based on the use of a compartmental model to analyze the transmission dynamics of the disease in South Africa. A notable feature of the model is the incorporation of the role of environmental contamination by COVID-infected individuals. The model, which is fitted and parametrized using cumulative mortality data from South Africa, is used to assess the impact of various control and mitigation strategies. Rigorous analysis of the model reveals that its associated continuum of disease-free equilibria is globally-asymptotically stable whenever the control reproduction number is less than unity. The epidemiological implication of this result is that the disease will eventually die out, particularly if control measures are implemented early and for a sustainable period of time. For instance, numerical simulations suggest that if the lockdown measures in South Africa were implemented a week later than the 26 March, 2020 date it was implemented, this will result in the extension of the predicted peak time of the pandemic, and causing about 10% more cumulative deaths. In addition to illustrating the effectiveness of self-isolation in reducing the number of cases, our study emphasizes the importance of surveillance testing and contact tracing of the contacts and confirmed cases in curtailing the pandemic in South Africa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.