Helicobacter pylori urease belongs to a family of highly conserved urea-hydrolyzing enzymes. A common feature of these enzymes is the presence of two Lewis acid nickel ions and a reactive cysteine residue in the active site. The H+/K(+)-ATPase inhibitor omeprazole is a prodrug of a sulfenamide which covalently modifies cysteine residues on the luminal side of the H+/K(+)-ATPase of gastric parietal cells. Omeprazole and eight analogues were selected based on their chemical, electronic, and kinetic properties, and each was incubated with viable H. pylori in phosphate-buffered saline at pH 7.4 for 30 min, after which 100 mM urea was added and the amount of ammonia formed analyzed after a further 10 min. Inhibition between 0% and 100% at a 0.1 mM concentration was observed for the different analogues and could be expressed as a function of the pKa-value of the pyridine, the pKa-value of the benzimidazole, the overall lipophilicity, and, most importantly, the rate of sulfenamide formation, in a quantitative structure-activity relationship. The inhibition was potentiated by a lower pH (favoring the formation of the sulfenamide) but abolished in the presence of beta-mercaptoethanol (a scavenger of the sulfenamide). Structural analogues incapable of yielding the sulfenamide did not inhibit ammonia production. Treatment of Helicobacter felis-infected mice with 230 mumol/kg flurofamide b.i.d. for 4 weeks, known to potently inhibit urease activity in vivo, as a means of eradicating the infection, was tested and compared with the effect of 125 mumol/kg omeprazole b.i.d. for 4 weeks. Neither treatment proved efficacious.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.