Graphics processing units (GPUs) provide both memory bandwidth and arithmetic performance far greater than that available on CPUs but, because of their Single-Instruction-Multiple-Data (SIMD) architecture, they are hard to program. Most of the programs ported to GPUs thus far use traditional data-level parallelism, performing only operations that operate uniformly over vectors.NESL is a first-order functional language that was designed to allow programmers to write irregular-parallel programs -such as parallel divide-and-conquer algorithms -for wide-vector parallel computers. This paper presents our port of the NESL implementation to work on GPUs and provides empirical evidence that nested data-parallelism (NDP) on GPUs significantly outperforms CPUbased implementations and matches or beats newer GPU languages that support only flat parallelism. While our performance does not match that of hand-tuned CUDA programs, we argue that the notational conciseness of NESL is worth the loss in performance. This work provides the first language implementation that directly supports NDP on a GPU.
Data parallelism has proven to be an effective technique for highlevel programming of a certain class of parallel applications, but it is not well suited to irregular parallel computations. Blelloch and others proposed nested data parallelism (NDP) as a language mechanism for programming irregular parallel applications in a declarative data-parallel style. The key to this approach is a compiler transformation that flattens the NDP computation and data structures into a form that can be executed efficiently on a widevector SIMD architecture. Unfortunately, this technique is ill suited to execution on today's multicore machines. We present a new technique, called data-only flattening, for the compilation of NDP, which is suitable for multicore architectures. Data-only flattening transforms nested data structures in order to expose programs to various optimizations while leaving control structures intact. We present a formal semantics of data-only flattening in a core language with a rewriting system. We demonstrate the effectiveness of this technique in the Parallel ML implementation and we report encouraging experimental results across various benchmark applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.