It was noted that the overall stability of foam concrete mixtures made by single-stage technology depends significantly on the measure of distribution of the dispersed gas phase involved in the mixing. The effect of the gas phase structure on the foam concrete mixture was evaluated by the value of the current consumed by the concrete mixer. The results of the experimental studies have shown the relevance of the scientific justification of mass transfer phenomena, that occur during mixing of raw materials in an industrial turbulent mixer. It was found that the process of dispersion of large-sized gas inclusions formed in the foam concrete mixture in the initial period of high-speed mixing is characterized by achieving the maximum power consumption at the mixer shaft. Then there is a slight decrease in energy consumption, in which there is an additional distribution of the dispersed gas phase, sufficient to attain stability of the foam concrete mixture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.