The liner-shipping network design problem is to create a set of nonsimple cyclic sailing routes for a designated fleet of container vessels that jointly transports multiple commodities. The objective is to maximize the revenue of cargo transport while minimizing the costs of operation. The potential for making cost-effective and energy-efficient liner-shipping networks using operations research (OR) is huge and neglected. The implementation of logistic planning tools based upon OR has enhanced performance of airlines, railways, and general transportation companies, but within the field of liner shipping, applications of OR are scarce. We believe that access to domain knowledge and data is a barrier for researchers to approach the important liner-shipping network design problem. The purpose of the benchmark suite and the paper at hand is to provide easy access to the domain and the data sources of liner shipping for OR researchers in general. We describe and analyze the liner-shipping domain applied to network design and present a rich integer programming model based on services that constitute the fixed schedule of a liner shipping company. We prove the liner-shipping network design problem to be strongly NP-hard. A benchmark suite of data instances to reflect the business structure of a global liner shipping network is presented. The design of the benchmark suite is discussed in relation to industry standards, business rules, and mathematical programming. The data are based on real-life data from the largest global liner-shipping company, Maersk Line, and supplemented by data from several industry and public stakeholders. Computational results yielding the first best known solutions for six of the seven benchmark instances is provided using a heuristic combining tabu search and heuristic column generation.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
We present a matheuristic, an integer programming based heuristic, for the Liner Shipping Network Design Problem. The heuristic applies a greedy construction heuristic based on an interpretation of the liner shipping network design problem as a multiple quadratic knapsack problem. The construction heuristic is combined with an improvement heuristic with a neighborhood defined by the solution space of a mixed integer program. The mixed integer program optimizes the removal and insertion of several port calls on a liner shipping service. The objective function is based on evaluation functions for revenue and transshipment of cargo along with in/decrease of vessel-and operational cost for the current solution. The evaluation functions may be used by heuristics in general to evaluate changes to a network design without solving a large scale multicommodity flow problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.