Multiple sclerosis is a chronic inflammatory and demyelinating disorder of the CNS with an unknown aetiology. Although intrathecal immunoglobulin G (IgG) synthesis is a key feature of the disease, little is still known about the B cell response in the CNS of multiple sclerosis patients. We analysed the phenotype and kinetics of different B cell subsets in patients with multiple sclerosis, infectious disease (IND) and non-inflammatory neurological disease (NIND). B cells were detected in the CSF of multiple sclerosis and IND patients, but were largely absent in NIND patients. In the CSF, the majority of B cells had a phenotype of memory B cells and short-lived plasma blasts (PB); plasma cells were absent from the compartment. The proportion of PB was highest in multiple sclerosis patients and patients with acute CNS infection. While PB disappeared rapidly from the CSF after resolution of infection in IND patients, these cells were present at high numbers throughout the disease course in multiple sclerosis patients. CSF PB numbers in multiple sclerosis patients strongly correlated with intrathecal IgG synthesis and inflammatory parenchymal disease activity as disclosed by MRI. This study identifies short-lived plasma blasts as the main effector B cell population involved in ongoing active inflammation in multiple sclerosis patients.
Multiple sclerosis is a chronic inflammatory and demyelinating disorder of the CNS with an unknown aetiology. Although intrathecal immunoglobulin G (IgG) synthesis is a key feature of the disease, little is still known about the B cell response in the CNS of multiple sclerosis patients. We analysed the phenotype and kinetics of different B cell subsets in patients with multiple sclerosis, infectious disease (IND) and non-inflammatory neurological disease (NIND). B cells were detected in the CSF of multiple sclerosis and IND patients, but were largely absent in NIND patients. In the CSF, the majority of B cells had a phenotype of memory B cells and short-lived plasma blasts (PB); plasma cells were absent from the compartment. The proportion of PB was highest in multiple sclerosis patients and patients with acute CNS infection. While PB disappeared rapidly from the CSF after resolution of infection in IND patients, these cells were present at high numbers throughout the disease course in multiple sclerosis patients. CSF PB numbers in multiple sclerosis patients strongly correlated with intrathecal IgG synthesis and inflammatory parenchymal disease activity as disclosed by MRI. This study identifies short-lived plasma blasts as the main effector B cell population involved in ongoing active inflammation in multiple sclerosis patients.
BackgroundThe severity and longevity of inflammation is controlled by endogenous counter-regulatory signals. Among them are long-chain polyunsaturated fatty acid (PUFA)-derived lipid mediators, which promote the resolution of inflammation, an active process for returning to tissue homeostasis.ObjectiveTo determine whether endogenous production of lipid-derived resolution agonists is regulated differentially in patients with highly active and less active multiple sclerosis (MS).DesignMatched-pairs study in University hospital Neurology department.PatientsBased on clinical (relapse frequency) and paraclinical (MRI lesions, contrast enhancement) criteria, 10 pairs of age- and sex-matched patients with relapsing-remitting MS were assigned either to a group with highly active or less active MS. Lipid mediators were quantified in serum and cerebrospinal fluid using LC-MS/MS-based lipidomics.ResultsLevels of the key arachidonic (ω-6) and docosahexaenoic acid (ω-6)-derived mediators prostaglandins (PG), leukotrienes, hydroxyeicosatetraenoic acids (HETE) and resolution agonists lipoxin A4 (LXA4), resolvin D1 (RvD1) and neuroprotectin D1 (NPD1) were quantified. In the patient group with highly active MS, 15-HETE and PGE2 were increased, which are products of the 15-lipoxygenase and cyclooxygenase pathways. The proresolution mediator RvD1 was significantly upregulated and NPD1 was detected in the highly active group only. LXA4 levels were not increased in patients with highly active MS.ConclusionsLipid mediator pathways are regulated differentially in the cerebrospinal fluid of MS patients, depending on disease severity. Non-exhaustive or possibly ‘delayed’ resolution pathways may suggest a defective resolution program in patients with highly active MS. Longitudinal analyses are required to hetero-typify this differential resolution capacity, which may be associated with disease progression, longevity and eventual termination.
Our findings demonstrate that the early phase of B burgdorferi meningoradiculitis is characterized by a well-coordinated immune response involving specific cytokine release and plasma cell recruitment, followed by a long-lasting, antigen-specific B-cell response in the central nervous system.
Initial clinical trials using Trichuris suis eggs (TSO) in autoimmune diseases such as inflammatory bowel disease, revealed a striking suppressive effect on the autoimmune response. Here, we analysed the effect of TSO therapy on the course of multiple sclerosis (MS), as a Th1/Th17-associated autoimmune disease. Different immunological parameters in four patients with secondary progressive MS were surveyed during a 6-month therapy with TSO, focusing on the modulation of T-cell Th1-Th2 balance as well as on the innate immune response. We are able to show a slight downregulation of the Th1-associated cytokine pattern, especially relevant in interleukin (IL)-2 (P < 0.05 after 2 months of therapy), with a temporary increase of Th2-associated cytokines such as IL-4. Furthermore, mild eosinophily and changes in CD4+ and CD8+T cells and natural killer (NK) CD56 bright cell numbers were observed. The findings observed in this group of patients suggest that TSO therapy has a moderate immunomodulatory impact in MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.