Biohybrid microrobots, composed of a living organism integrated with an artificial carrier, offer great advantages for the miniaturization of devices with onboard actuation, sensing, and control functionalities and can perform multiple tasks, including manipulation, cargo delivery, and targeting, at nano- and microscales. Over the past decade, various microorganisms and artificial carriers have been integrated to develop unique biohybrid microrobots that can swim or crawl inside the body, in order to overcome the challenges encountered by the current cargo delivery systems. Here, we first focus on the locomotion mechanisms of microorganisms at the microscale, crucial criteria for the selection of biohybrid microrobot components, and the integration of the selected artificial and biological components using various physical and chemical techniques. We then critically review biohybrid microrobots that have been designed and used to perform specific tasks in vivo. Finally, we discuss key challenges, including fabrication efficiency, swarm manipulation, in vivo imaging, and immunogenicity, that should be overcome before biohybrid microrobots transition to clinical use.
Collective control of mobile microrobotic swarms is indispensable for their potential high‐impact applications in targeted drug delivery, medical diagnostics, parallel micromanipulation, and environmental sensing and remediation. Without integrated electronics for sensing and actuation, current microrobotic systems should rely on physical interactions among individual microrobots for local communication and cooperation. Here, it is shown that mobile microrobotic swarms with well‐defined collective behavior can be designed by engineering magnetic interactions among individual units. Microrobots, dynamically self‐assembled from magnetic microparticles into linear chains, locomote on surfaces in response to a precessing magnetic field. Control over precessing magnetic field allows engineering attractive and repulsive interactions among microrobots and, thus, collective order with well‐defined spatial organization and stable parallel operation over macroscale distances (≈1 cm) and through confining obstacles. The design approach described here addresses programmable assembly, propulsion, and collective behavior of dense mobile microrobot swarms simultaneously by engineering magnetic interactions and dynamic actuation of microrobots. The presented approach will advance swarm microrobotics by enabling facile and rapid formation of self‐organized and reconfigurable microrobotic swarms with programmable collective order and stability.
Mobile microrobots are envisioned to be useful in a wide range of high-impact applications, many of which requiring cohesive group formation to maintain self-bounded swarms in the absence of confining boundaries. Cohesive group formation relies on a balance between attractive and repulsive interactions between agents. We found that a balance of magnetic dipolar attraction and multipolar repulsion between self-assembled particle chain microrobots enable their selforganization into cohesive clusters. Self-organized microrobotic clusters translate above a solid substrate via a hydrodynamic self-propulsion mechanism. Cluster velocity increases with cluster size, resulting from collective hydrodynamic effects. Clustering is promoted by the strength of cohesive interactions and hindered by heterogeneities of individual microrobots. Scalability of cohesive interactions allows formation of larger groups, whose internal spatiotemporal organization undergoes a transition from solid-like ordering to liquid-like behavior with increasing cluster size. Our work elucidates the dynamics of clustering under cohesive interactions, and presents an approach for addressing operation of microrobots as localized teams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.