Blending biomass materials of different physical or chemical properties provides an opportunity to adjust the quality of the feedstock to meet the specifications of the conversion platform. We propose a model which identifies the right mix of biomass to optimize the performance of the thermochemical conversion process at the minimum cost. This is a chance-constraint programming (CCP) model which takes into account the stochastic nature of biomass quality. The proposed CCP model ensures that process requirements, which are impacted by physical and chemical properties of biomass, are met most of the time. We consider two problem settings, a centralized and a decentralized supply chain. We propose a mixed-integer linear program to model the blending problem in the centralized setting and a bilevel program to model the blending problem in the decentralized setting. We use the sample average approximation method to approximate the chance constraints, and propose solution algorithms to solve this approximation. We develop a case study for South Carolina using data provided by the Billion Ton Study. Based on our results, the blends identified consist mainly of pine and softwood residues. The blends identified and the suppliers selected by both models are different. The cost of the centralized supply chain is 2%-6% lower. The implications of these results are twofold. First, these results could lead to improved collaborations in the supply chain. Second, these results provide an estimate of the approximation error from assuming centralized decision making in the supply chain.
Variations of physical and chemical characteristics of biomass lead to an uneven flow of biomass in a biorefinery, which reduces equipment utilization and increases operational costs. Uncertainty of biomass supply and high processing costs increase the risk of investing in the US's cellulosic biofuel industry. We propose a stochastic programming model to streamline processes within a biorefinery. A chance constraint models system's reliability requirement that the reactor is operating at a high utilization rate given uncertain biomass moisture content, particle size distribution, and equipment failure. The model identifies operating conditions of equipment and inventory level to maintain a continuous flow of biomass to the reactor. The Sample Average Approximation method approximates the chance constraint and a bisection search-based heuristic solves this approximation. A case study is developed using real-life data collected at Idaho National Laboratory's biomass processing facility. An extensive computational analysis indicates that sequencing of biomass bales based on moisture level, increasing storage capacity, and managing particle size distribution increase utilization of the reactor and reduce operational costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.