Motivation Recent experimental evidence has shown that some long noncoding RNAs (lncRNAs) contain small open reading frames (sORFs) that are translated into functional micropeptides, suggesting that these lncRNAs are misannotated as noncoding. Current methods to detect misannotated lncRNAs rely on ribosome-profiling (Ribo-Seq) and mass-spectrometry experiments, which are cell-type dependent and expensive. Results Here, we propose a computational method to identify possible misannotated lncRNAs from sequence information alone. Our approach first builds deep learning models to discriminate coding and non-coding transcripts and leverages these models’ training dynamics to identify misannotated lncRNAs—i.e. lncRNAs with coding potential. The set of misannotated lncRNAs we identified significantly overlap with experimentally validated ones and closely resemble coding protein sequences as evidenced by significant BLAST hits. Our analysis on a subset of misannotated lncRNA candidates also shows that some ORFs they contain yield high confidence folded structures as predicted by AlphaFold2. This methodology offers promising potential for assisting experimental efforts in characterizing the hidden proteome encoded by misannotated lncRNAs and for curating better datasets for building coding potential predictors. Availability Source code is available at https://github.com/nabiafshan/DetectingMisannotatedLncRNAs. Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.