La electroencefalografía (EEG) es una técnica no invasiva que sirve para caracterizar la actividad eléctrica del cerebro. En la actualidad existe un creciente interés en el desarrollo de técnicas digitales de procesamiento para interpretar dichas señales, estas técnicas consisten en transformar la información contenida en las señales de EEG en datos numéricos y/o gráficos que faciliten su análisis y sistematización. El objetivo de la presente tesis es el estudio y la aplicación de diferentes técnicas de procesamiento de EEG a casos típicos como la detección no supervisada de ritmos cerebrales, de potenciales relacionados a la ejecución de movimientos y crisis epilépticas. Para el procesamiento de las señales de EEG se utilizaron las técnicas de Transformada de Fourier, procesamientos tiempo-frecuencia como la Transformada de Gabor y la Transformada Wavelet, y diferentes mediciones de la entropía de la señal, como la entropía dependiente del tiempo, la entropía espectral y la entropía multirresolución.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.