The gas-phase loading of [Zn4O(bdc)3] (MOF-5; bdc = 1,4-benzenedicarboxylate) with the volatile compound [Ru(cod)(cot)] (cod = 1,5-cyclooctadiene, cot = 1,3,5-cyclooctatriene) was followed by solid-state (13)C magic angle spinning (MAS) NMR spectroscopy. Subsequent hydrogenolysis of the adsorbed complex inside the porous structure of MOF-5 at 3 bar and 150 degrees C was performed, yielding ruthenium nanoparticles in a typical size range of 1.5-1.7 nm, embedded in the intact MOF-5 matrix, as confirmed by transmission electron microscopy (TEM), selected area electron diffraction (SAED), powder X-ray diffraction (PXRD), and X-ray absorption spectroscopy (XAS). The adsorption of CO molecules on the obtained Ru@MOF-5 nanocomposite was followed by IR spectroscopy. Solid-state (2)H NMR measurements indicated that MOF-5 was a stabilizing support with only weak interactions with the embedded particles, as deduced from the surprisingly high mobility of the surface Ru-D species in comparison to surfactant-stabilized colloidal Ru nanoparticles of similar sizes. Surprisingly, hydrogenolysis of the [Ru(cod)(cot)]3.5@MOF-5 inclusion compound at the milder condition of 25 degrees C does not lead to the quantitative formation of Ru nanoparticles. Instead, formation of a ruthenium-cyclooctadiene complex with the arene moiety of the bdc linkers of the framework takes place, as revealed by (13)C MAS NMR, PXRD, and TEM.
In this paper a quantitative explanation for a diamagnetic ortho/para H2 conversion is given. The description is based on the quantum-mechanical density matrix formalism originally developed by Alexander and Binsch for studies of exchange processes in NMR spectra. Only the nuclear spin system is treated quantum-mechanically. Employing the model of a three spin system, the reactions of the hydrogen gas with the catalysts are treated as a phenomenological rate process, described by a rate constant. Numerical calculations reveal that for nearly all possible geometrical arrangements of the three spin system an efficient spin conversion is obtained. Only in the chemically improbable case of a linear group H-X-H no spin conversion is obtained. The efficiency of the spin conversion depends strongly on the lifetime of the H-X-H complex and on the presence of exchange interactions between the two hydrogens. Even moderate exchange couplings cause a quench of the spin conversion. Thus a sufficiently strong binding of the dihydrogen to the S spin is necessary to render the quenching by the exchange interaction ineffective.
In this paper a possible explanation for an unexpected ortho/para-water ratio in the gas clouds of comets is given. The description is based on the quantum-mechanical density matrix formalism and the spin temperature concept. Only the nuclear spin system is treated quantum-mechanically. Employing the model of a four spin system, created by two nearest neighbour water molecules, spin eigenstates and their dynamics under the influence of their mutual dipolar interactions are studied. It is shown that a fast conversion between ortho- and para-states occurs on a msec time scale, caused by the intermolecular homonuclear magnetic dipolar interaction. Moreover the spin eigenstates of water in an ice crystal are determined by magnetic dipolar interactions and are not given by normal ortho- and para-H2O states of gaseous water. As a result of this the spin temperature of gaseous water evaporated from ice depends strongly on its evaporation history and the ortho/para-ratio of water molecules are only an indirect measure of the temperature of ice crystals from where they descend. This result could explain the unexpected experimentally observed ortho/para-ratios in the clouds of comets.
The phenomenon of exchange coupling is taken into account in the description of the magnetic nuclear spin conversion between bound ortho- and para-dihydrogen. This conversion occurs without bond breaking, in contrast to the chemical spin conversion. It is shown that the exchange coupling needs to be reduced so that the corresponding exchange barrier can increase and the given magnetic interaction can effectively induce a spin conversion. The implications for related molecules such as water are discussed. For ice, a dipolar magnetic conversion and for liquid water a chemical conversion are predicted to occur within the millisecond timescale. It follows that a separation of water into its spin isomers, as proposed by Tikhonov and Volkov (Science 2002, 296, 2363), is not feasible. Nuclear spin temperatures of water vapor in comets, which are smaller than the gas-phase equilibrium temperatures, are proposed to be diagnostic for the temperature of the ice or the dust surface from which the water was released.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.