DNAmPhenoAge, DNAmGrimAge, and the newly developed DNAmFitAge are DNA methylation (DNAm)-based biomarkers that reflect the individual aging process. Here, we examine the relationship between physical fitness and DNAm-based biomarkers in adults aged 33–88 with a wide range of physical fitness (including athletes with long-term training history). Higher levels of VO2max (ρ = 0.2, p = 6.4E − 4, r = 0.19, p = 1.2E − 3), Jumpmax (p = 0.11, p = 5.5E − 2, r = 0.13, p = 2.8E − 2), Gripmax (ρ = 0.17, p = 3.5E − 3, r = 0.16, p = 5.6E − 3), and HDL levels (ρ = 0.18, p = 1.95E − 3, r = 0.19, p = 1.1E − 3) are associated with better verbal short-term memory. In addition, verbal short-term memory is associated with decelerated aging assessed with the new DNAm biomarker FitAgeAcceleration (ρ: − 0.18, p = 0.0017). DNAmFitAge can distinguish high-fitness individuals from low/medium-fitness individuals better than existing DNAm biomarkers and estimates a younger biological age in the high-fit males and females (1.5 and 2.0 years younger, respectively). Our research shows that regular physical exercise contributes to observable physiological and methylation differences which are beneficial to the aging process. DNAmFitAge has now emerged as a new biological marker of quality of life.
Alzheimer’s disease (AD) is a progressive degenerative disorder and a leading cause of dementia in the elderly. The etiology of AD is multifactorial, including an increased oxidative state, deposition of amyloid plaques, and neurofibrillary tangles of the tau protein. The formation of amyloid plaques is considered one of the first signs of the illness, but only in the central nervous system (CNS). Interestingly, results indicate that AD is not just localized in the brain but is also found in organs distant from the brain, such as the cardiovascular system, gut microbiome, liver, testes, and kidney. These observations make AD a complex systemic disorder. Still, no effective medications have been found, but regular physical activity has been considered to have a positive impact on this challenging disease. While several articles have been published on the benefits of physical activity on AD development in the CNS, its peripheral effects have not been discussed in detail. The provocative question arising is the following: is it possible that the beneficial effects of regular exercise on AD are due to the systemic impact of training, rather than just the effects of exercise on the brain? If so, does this mean that the level of fitness of these peripheral organs can directly or indirectly influence the incidence or progress of AD? Therefore, the present paper aims to summarize the systemic effects of both regular exercise and AD and point out how common exercise-induced adaptation via peripheral organs can decrease the incidence of AD or attenuate the progress of AD.
DNAmPhenoAge, DNAmGrimAge, and the newly developed DNAmFitAge are DNA methylation (DNAm) based biomarkers that reflect the individual aging process. Furthermore, physical fitness is known to relate to the aging process, but its relationship to the gut microbiome has not yet been studied. Here, we examine the relationship among physical fitness, DNAm based biomarkers, and the microbiome in adults aged 33-88 with a wide range of physical fitness (including athletes with long-term training history). Higher levels of VO2max (ρ=0.2, p=6.4E-4, r=0.19, p=1.2E-3), Jumpmax p=0.11, p=5.5E-2, r=0.13 p= 2.8E-2), Gripmax (=ρ=0.17, p=3.5E-3, r=0.16, p=5.6E-3), and HDL levels (ρ=0.18, p=1.95E-3, r=0.19, p=1.1E-3) are associated with better verbal short term memory. In addition, verbal short term memory is associated with decelerated aging assessed with the new DNAm biomarker FitAgeAcceleration (ρ: -0.18, p=0.0017). DNAmFitAge is able to distinguish high fitness individuals from low/medium fitness individuals better than existing DNAm biomarkers and estimates a younger biological age in the high fit males and females (1.5 and 2.0 years younger, respectively). The microbiomal pathways are associated with VO2max, redox balance, and DNAmPhenoAge. PhenoAge Acceleration is influenced by pyruvate producing microbiomal pathways, where higher activity of these pathways lead to suppressed PhenoAge acceleration. Our research shows that regular physical exercise contributes to observable physiological, methylation, and microbiota differences which are beneficial to the aging process. DNAmFitAge emerged as a biological marker of the quality of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.