Summary Cadherin and nectin are distinct transmembrane proteins of adherens junctions. Their ectodomains mediate adhesion while their cytosolic regions couple the adhesive contact to the cytoskeleton. Both these proteins are essential for adherens junction formation and maintenance. However, some basic aspects of these proteins, such as their organization in adherence junctions, have remained open. Therefore, using super-resolution microscopy and live-imaging, we focused on the subjunctional distribution of these proteins. We showed that cadherin and nectin in the junctions of A431 cells and human keratinocytes are located in separate clusters. The size of each cluster is independent of that of the adjacent clusters and can significantly fluctuate over time. Several nectin and cadherin clusters that constitute an individual adherens junction are united by the same actin filament bundle. Surprisingly, interactions between each cluster and F-actin are not uniform since neither vinculin nor LIM domain actin-binding proteins match the boundaries of cadherin or nectin clusters. Thus, the adherens junction is not a uniform structure but a mosaic of different adhesive units with very diverse modes of interaction with the cytoskeleton. We propose that such a mosaic architecture of adherence junctions is important for the fast regulation of their dynamics.
The treatment of peri-implantitis, which causes tissue deterioration surrounding osseointegrated implants, involves surface decontamination and cleaning. However, chemical cleaning agents may alter the structure of implant surfaces. We investigated three such cleaning solutions. Commercially pure (grade 4) machined titanium discs (CAMLOG Biotechnologies AG, Switzerland) were treated with 3% H(2)O(2) (5 min), saturated citric acid (pH = 1) (1 min) or chlorhexidine gel (5 min), and their surface properties were examined by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Human epithelial cell attachment (24-h observation) and proliferation (72-h observation) were investigated via dimethylthiazolyl-diphenyltetrazolium bromide (MTT) and bicinchoninic acid (BCA) protein content assays. AFM revealed no significant difference in roughness of the three treated surfaces. XPS confirmed the constant presence of typical surface elements and an intact TiO(2) layer on each surface. The XPS peaks after chlorhexidine gel treatment demonstrated C-O and/or C=O bond formation, due to chlorhexidine digluconate infiltrating the surface. MTT and BCA assays indicated similar epithelial cell attachments in the three groups; epithelial cell proliferation being significantly higher after H(2)O(2) than after chlorhexidine gel treatment (not shown by BCA assays). These agents do not harm the Ti surface. Cleaning with H(2)O(2) slightly enhances human epithelial cell growth, in contrast to chlorhexidine gel.
We describe a novel chemical mitogen-free in vitro culture technique for obtaining pure melanocyte cultures using normal human adult epidermis as a source. The culture medium consists equal parts of the commercially available Keratinocyte Basal and AIM-V media (both from Gibco), as basal medium, which is supplemented with fetal bovine serum, bovine pituitary extract and recombinant human epidermal growth factor (EGF). Melanocytes harvested from human adult skin proliferate extensively and can be passaged serially up to 10-15 times using this medium. We have verified the identity of the cultured cells by tyrosinase mRNA expression and TRP-1 protein staining. Moreover, we showed that autologous human serum alone, without additional supplements is able to provide sufficient growth support for the cultured cells in the basal medium, making this culture technique suitable for autologous melanocyte transplantation. In this culture system normal human adult melanocytes expressed both EGF receptor (EGFR) mRNA and protein and EGF showed a dose dependent mitogenic effect on the cells. EGF itself had no significant influence on EGFR mRNA expression.
In previous work we described a novel culture technique using a cholera toxin and PMA-free medium (Mel-mix) for obtaining pure melanocyte cultures from human adult epidermis. In Mel-mix medium the cultured melanocytes are bipolar, unpigmented and highly proliferative. Further characterization of the cultured melanocytes revealed the disappearance of c-Kit and TRP-1 and induction of nestin expression, indicating that melanocytes dedifferentiated in this in vitro culture. Cholera toxin and PMA were able to induce c-Kit and TRP-1 protein expressions in the cells, reversing dedifferentiation. TRP-1 mRNA expression was induced in dedifferentiated melanocytes by UV-B irradiated keratinocyte supernatants, however direct UV-B irradiation of the cells resulted in further decrease of TRP-1 mRNA expression. These dedifferentiated, easily accessible cultured melanocytes provide a good model for studying melanocyte differentiation and possibly transdifferentiation. Because melanocytes in Mel-mix medium can be cultured with human serum as the only supplement, this culture system is also suitable for autologous cell transplantation.
In this study, we show that the G0-G1/S phase of HaCaT keratinocyte cell cycle is characterized by D1-type cyclin expression, whereas during the repeated rapid turnover of highly proliferating cells, the expression of cyclins D2 and D3 dominates. Knocking down cyclin D1 mRNA resulted in no change of cell proliferation and morphology, indicating that D2 and D3 cyclins could substitute for D1 in driving the cell cycle. Increased numbers of cyclin D1-expressing keratinocytes were found in the basal layers of the lesional psoriatic epidermis compared to both normal and non-lesional epidermis without increased expression of cyclin D1 mRNA, suggesting a possible dysfunction in the degradation of cyclin D1 protein. We also detected a significant increase in cyclin D2 and D3 mRNA expressions in psoriatic epidermis compared to normal epidermis with no difference in protein expressions. Blocking alpha5-integrin function by a neutralizing antibody in HaCaT keratinocytes downregulated the expression of cyclin D1 mRNA without affecting the expressions of cyclin D2 and D3 indicating a regulatory role for alpha5-integrin in the expression of cyclin D1. Our data suggest a possible role for D-type cyclins in the excessive basal-cell proliferation and perturbed keratinocyte differentiation in the psoriatic epidermis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.