An overview of the techniques used in art and archaeology is presented and the applicability of X-ray radiography, X-ray fluorescence (XRF), and X-ray diffraction analysis (XRD) as a tool for nondestructive investigations of objects of art and archaeology is discussed. X-ray radiography, for example, is a standard technique widely used and accepted by art historians, archaeologists, curators, and conservators as this method enables information about the manufacturing process and the condition of an object without “touching” the artifact. XRF and XRD enable a nondestructive determination of the material composition of artifacts and the determination of the crystalline structure of the components too. Air path systems and instruments with the micro-beam of X-ray and synchrotron radiation were applied for the analysis of easel paintings, pigments in paint layers, glass artifacts, and coins.
Two precious Carolingian manuscripts kept in the library of Kremsmuenster Abbey in Upper Austria were subject of investigation. The well-known Codices Millenarius Maior (Inv. No. CC Cim 1, Fig. 1a) and Millenarius Minor (Inv. No. CC Cim 2, Fig. 1b) were studied within the framework of the Centre of Image and Material Analysis in Cultural Heritage (CIMA) in Vienna. The manuscripts are especially famous for their precious and colorful miniatures of a very early medieval period. The aim of the work was the material identification (colors and inks) used for the make-up of the two codices in order to gain a better understanding of their evolution and their provenance. The instrumentation available in the CIMA laboratories allowed performing in situ measurements using non-destructive and non-invasive analytical methods. The investigations comprised a combination of three complementary methods: X-ray fluorescence analysis (XRF), Fourier transform infrared spectrometry in the reflection mode (rFTIR) and Raman spectrometry. In addition to the identification of the pigments and inks also a detailed characterization of the parchment concerning its manufacturing process was achieved by that combination. The identification of calcium carbonates on the surface of the parchment is an indicator for the liming or whitening of the animal skin, whereas the polishing process of the parchment surface with pumice stone, left traces of silicates, detected by rFTIR. The combination of XRF and Raman spectrometry enabled the characterization of black/brown inks in the text revealing the usage of iron gall inks. For the red inks applied for text and initials vermilion and red lead were applied in both codices. Furthermore, the pigment palette used for the illumination included: lead white, orpiment/realgar, red lead, vermilion and red iron oxides as well as azurite and indigo, together with the rather rare copper chloride hydroxide. Furthermore, in both gospels the application of metal leaves as well as powders made of silver-copper and gold-copper alloys could be determined by XRF on several folios.
A multianalytical approach was used to characterize the materials in the “Vienna Moamin”, an outstanding richly illustrated manuscript from the late thirteenth century, which was made in Italy and is now kept in the Kunsthistorisches Museum Wien. The investigations were carried out with a non-invasive approach by using complementary techniques, such as X-ray fluorescence (XRF), reflection Fourier transform infrared spectroscopy (rFTIR), Raman spectroscopy, and fiber optic reflectance spectroscopy (FORS). In addition, XRF scans were performed in two areas which yielded chemical maps showing the elemental distribution. The results revealed that typical materials from the medieval times were applied for the manuscript. Calcium carbonate on the parchment surface indicated a dehairing process with lime and/or whitening with chalk. Two different iron gall inks were detected in the main text and marginal notes, and vermilion was used for rubrication. The color palette included azurite, a green colorant composed of orpiment and indigo, yellow ochre, brown iron oxide pigments, minium, vermilion, brazilwood lake, and carbon black. Moreover, mosaic gold was detected in gold-beige hues. Lead white was identified for white areas and fine decoration lines, as well as in mixture with blue and red pigments for light color shades. No reliable information could be obtained concerning the binding media. Two differing application techniques for gold leaf were detected, which correspond with stylistic differences: either on gypsum or chalk preparation layers. Furthermore, calcium soap contents in certain colors were determined only on one folio with unique characteristics. The XRF scans of two historiated initials revealed that similar materials were applied in both cases and provided further valuable information about the painting technique. The results obtained enabled to gain insights into Italian thirteenth century manuscript production techniques and to characterize the used materials. The investigations showed the importance of scanning XRF for the elucidation of painting techniques, but also the demand of scanning devices utilizing compound specific analytical techniques such as rFTIR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.