The process scale-up of fully oxide-based environmental barrier coatings (EBCs) on sintered SiC and chemical vapor infiltration (CVI) SiC/SiC ceramic matrix composite (CMC) sub-components was investigated using various slurry manufacturing processes (dip, spray, spin–dip). The performance of EBC-coated sub-components (SiC heating element, SiC/SiC ceramic matrix mini-composite, SiC airfoil, SiC/SiC CMC airfoil) was evaluated in steam oxidation and combustion rigs. Steam oxidation was conducted at 1427 °C in 90 vol.% H2O (g) + 10 vol.% O2 (g) with a 1 h hold at 1427 °C per cycle (1 h hot and 20 min cooling). For high-pressure combustion rig testing, the EBC surface temperature ranged between 1354 °C and 1538 °C with the temperature gradient through CMC + EBC ranging between 100 °C and 150 °C. Dip and spin–dip are non-line-of-sight processes, whereas spray is a line-of-sight process. The three processes, collectively, demonstrated the capability to manufacture slurry EBCs on sub-components with various shapes and sizes. There was no discernable disparity in the EBC steam oxidation performance between the coupons and sub-components in this study and coupons in a previous study. The dependence of steam oxidation rates on the substrate chemistry reported previously was confirmed. The steam oxidation rate of EBC-coated sintered SiC, compared with EBC-coated CVI CMC, was ~2 times and ~1.5 times higher after 100 h and 500 h, respectively, due to the boron sintering aid in sintered SiC. An EBC-coated CMC airfoil after 150 15-h-long cycles in a high-pressure combustion rig test showed only limited EBC spallation along the leading edge and more substantial spallation along the trailing edge, demonstrating the feasibility of an oxide-based bond coat to meet the extreme temperature requirements of next-generation EBCs.
An investigation of silicone elastomers for seals used in docking and habitat systems for future space exploration vehicles is being conducted at NASA. For certain missions, NASA is considering androgynous docking systems where two vehicles each having a seal would be required to: dock for a period of time, seal effectively, and then separate with minimum push-off forces for undocking. Silicone materials are generally chosen for their wide operating temperatures and low leakage rates. However silicone materials are often sticky and usually exhibit considerable adhesion when mated against metals and silicone surfaces. This paper investigates the adhesion unit pressure for a space rated silicone material (S0383-70) for either seal-on-seal (SoS) or seal-on-aluminum (SoAl) operation modes in the following conditions: as-received, after ground-based atomic-oxygen (AO) pre-treatment, after application of a thin coating of a space-qualified grease (Braycote 601EF), and after a combination of AO pre-treatment and grease coating. In order of descending adhesion reduction, the AO treatment reduced seal adhesion the most, followed by the AO plus grease pre-treatment, followed by the grease treatment. The effects of various treatments on silicone (S0383-70 and ELA-SA-401) outgassing properties were also investigated. The leading adhesion AO pretreatment reduction led to a slight decrease in outgassing for the S0383-70 material and virtually no change in ELA-SA-401 outgassing.
Due to their wide operating temperatures and low leakage rates, silicone elastomers are the only class of flight qualified elastomer materials that currently meet NASA's needs for various seal applications, which include docking and hatch seals for future space exploration vehicles. However, silicone elastomers are naturally sticky and exhibit sizeable adhesion when mated against metals and other silicone surfaces. This undesirable adhesion can make undocking spacecraft or opening a hatch problematic. Two approaches that can be used to reduce seal adhesion include use of grease or, application of low doses of atomic oxygen (AO). This paper investigates a third approach: the application of light doses of vacuum ultraviolet (VUV) radiation. Presented are the adhesion and leakage characteristics of S0383-70 silicone elastomer exposed to various VUV doses in the 115 to 200 nm wavelength range. The data indicate that adhesion is expected to be less than the target threshold maximum of 2 lb/in 2 after about 1 J/cm 2 of VUV exposure for seal-to-metal configurations and after 2 J/cm 2 for seal-to-seal configurations with no significant damage, or increase in seal leakage. This paper shows that VUV, without AO or grease, can be an effective means to reduce adhesion to the desired levels necessary for space seals with minimal change in seal leak rates.
An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 °C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 °C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines. IntroductionThe discovery of the compliant foil journal bearing was initially reported by Blok and VanRussom (ref. 1) in 1953. These bearings are self-acting hydrodynamic bearings having the unique feature of a compliant surface. A representation of a compliant foil journal bearing is shown in figure 1. The main features of these bearings include a rigid sleeve (or bearing housing), a compliant foundation provided by either overlapping leaves or bump foils, the hydrodynamic surfaces of the top foil, and the rotating journal. When stationary, the top foils are preloaded against the journal, which is a departure from traditional hydrodynamic bearings that are characterized by a fixed clearance between the rotating and stationary components. However, even at relatively low rotational speeds, hydrodynamic lubrication quickly builds a gas pressure that acts against the compliant foundation and separates the two moving surfaces. This provides a low friction and maintenance-free rotor support system. These bearings can offer many advantages to high speed turbomachines. These benefits primarily arise from the elimination of an oil system and the associated weight and maintenance burden. Additional benefits may be achieved from the elimination of temperature and rotating speed limits that are found on traditional oil-lubricated bearings. The resulting rotor support system having no oil lubricated and cooled components has become known as "Oil-Free Turbomachinery".Over the first four decades of foil bearing development these bea...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.